
A. Theoretical Analysis
A.1. Analytical Insight into Gaussian Processes

In this section, we give a mathematical explanation about
why the loss changes obey Gaussian Distributions. Our
analysis based on the following assumption where we as-
sume that the global weight update in one communication
round follow a Gaussian Distribution under uniformly client
selection.

Assumption 1. In any communication round t, if the client
selection Kt is a random variable sampled from a uni-
form distribution, the global model update ∆wt(Kt) =
wt+1(Kt)−wt follows Gaussian Distribution, i.e.,

Kt ∼ Uniform
(
{K ⊆ U : |K| = C}

)
⇒∆wt(Kt) ∼ N (∆wt;−ηtg̃t,

η2tBBT

C
),

(18)

where g̃t = Ek[∇̃lk(wt)] is the mean cumulative gradient
of all the clients in U, and B is a constant matrix.

Assumption 1 is inspired by [22] who assumes the
stochastic gradients in SGD are Gaussian, and therefore
the parameter update after one iteration follows a Gaussian
Distribution. Note that in the FL procedure, the form in Eq. 5
is very similar to that in the SGD update. The only differ-
ence is that the average gradients within one mini-batch is
replaced by the average cumulative gradients of the selected
clients. Therefore, it is reasonable to make this assumption
similar to [22].

To make a distinction, we use ∆w without parentheses
to denote a random variable w.r.t. the uniformly sampled
client selection, and use ∆w(K) to denote a determinate
value without randomness where the client selection K is
determined. The rule for ∆l and ∆l(K) in the following
contents is the same.

Based on this assumption, we can easily show that the loss
changes in each communication round follow a Gaussian
Process under first-order approximation, with the property
of Gaussian Distribution.

Corollary 1. In any communication round t, ∀S =
{i1, · · · , i|S|} ⊆ U, the loss changes ∆ltS =

[∆lti1 , · · · ,∆lti|S| ]
T follow a Multivariate Gaussian Distribu-

tion (or a Gaussian Process) under first-order approximation,
i.e.,

∆ltS ∼ N (∆ltS;µ
t
S,Σ

t
S),

where

µt
S = −ηtGt

S
T
g̃t;

Σt
S =

η2t
C

Gt
S
T
BBTGt

S;

Gt
S =

[
∇li1(wt), · · · ,∇li|S|(wt)

]
.

(19)

We remove the subscript S to simplify the corresponding
representation for the client set U as

∆lt ∼ N (∆lt;µt,Σt), (20)

which is exactly the result in Eq. 8. And we can also obtain
a mathematical reason from Eq. 19 for our choice of homo-
geneous linear kernel in Section 4.5, where Xt = BTGt.

Remark Although an uniformly sampled client selection
is required in Assumption 1 to get the loss changes to follow
a GP prior, it is not necessary for the final selection to be
uniformly sampled since we are predicting its loss changes
with the GP posterior conditioned on the selected clients. We
can view each posterior during the iterative selection process
in Section 4.3 as the distribution of the loss changes w.r.t. the
client selection that consists of two parts: (i) fixed selected
clients in the previous iteration and (ii) uniformly sampled
clients from the rest of the clients.

A.2. Proof of Lemma 1

To prove Lemma 1, we first introduce another assumption.

Assumption 2. In any communication round t, for any client
selection K, we have

Pr(K|∆ltK(K)) ≈ 1. (21)

This assumption asserts that for any client selection K,
there is unlikely another client selection other than K which
can produce the same loss changes on K, i.e.,

∀K′,K ⊆ U, |K′| = |K|
⇒Pr(∆ltK(K′) = ∆ltK(K)|K′ ̸= K) ≈ 0.

(22)

We anticipate that this is a realistic assumption because of the
heterogeneity between clients and the highly complexity of
the neural network. When selecting different clients, the data
used for training varies a lot under heterogeneous federated
learning settings. This fact makes it almost impossible to
produce the same neural network, and thus the same loss
changes, with two different client selections. Furthermore,
the selected clients usually have larger loss decreases than
other clients who are not selected, because the model update
is based on the mean cumulative gradient of these selected
clients. The other client selection is unlikely to generate the
same large loss decreases on all of them.

With Assumption 2, we can get the following corollary 2.

Corollary 2. In any communication round t, for any client
selection K, we have

Pr(∆lt(K)|∆ltK(K)) ≈ 1. (23)



Proof. When client selection K is given, we get the deter-
minate model update ∆wt(K), thus the loss changes are
known without randomness. In the other word,

Pr(∆lt(K)|K) = 1 (24)

always holds. Besides, we can extend the condition in Eq. 21
to the loss changes of all the clients and get

Pr(K|∆lt(K)) ≈ 1. (25)

Combining Eq. 21, Eq. 24 and Eq. 25, we have

Pr(∆lt(K)) ≈Pr(∆lt(K),K) (26)
=Pr(K) (27)

=Pr(∆ltK(K),K) (28)

≈Pr(∆ltK(K)) (29)

By substituting Eq. 29 into the expression of
Pr(∆lt(K)|∆ltK(K)), we get

Pr(∆lt(K)|∆ltK(K)) =
Pr(∆lt(K),∆ltK(K))

Pr(∆ltK(K))
(30)

=
Pr(∆lt(K))

Pr(∆ltK(K))
(31)

≈1. (32)

Now we are ready to prove Lemma 1.

Lemma 1. The optimization problem in Eq. (6) is approxi-
mately equivalent to the following probabilistic form.

min
Kt

E∆lt|∆ltKt
(Kt)

[∑
i

pi∆lti

]
=

∑
i

piµ̃
t
i(∆ltKt

(Kt)),

(33)
where ∆lt = [∆lt1, · · · ,∆ltN ] is the loss changes of all
clients in round t, which is a random variable w.r.t random
client selection in round t. µ̃t(∆ltKt

(Kt)) is the posterior
mean of ∆lt conditioned on ∆ltKt

(Kt) = [∆lti(Kt)]i∈Kt
.

Proof. According to Corollary 2, we can transform the opti-
mization problem in Eq. 6 into the form in Eq. 33.

min
Kt

∆Lt(Kt) (34)

=min
Kt

∑
i

pi∆lti(Kt) (35)

≈min
Kt

Pr(∆lt(Kt)|∆ltKt
(Kt))

∑
i

pi∆lti(Kt) (36)

≈min
Kt

E∆lt|∆ltKt
(Kt)

[∑
i

pi∆lti

]
(37)

=min
Kt

∑
i

piµ̃
t
i(∆ltKt

(Kt)). (38)

A.3. Proof of Lemma 2

Lemma 2. The selection criterion of FedCor when selecting
two clients k1 and k2 can be written as

k1 = argmax
k

βτk
∑
i

piσirik, (39)

k2 = argmax
k′

βτk′
[∑

i piσirik′ − rk1k′
∑

i piσirik1

]
√

1− r2k′k1

,

(40)

where rij = Σi,j/σiσj is the Pearson correlation coefficient.

Proof. We first deduce Eq. 39 for the first client k1. By
substituting the loss change estimation ∆l̂k from Eq. 9 into
the criterion in Eq. 10, we can calculate the weighted sum of
the posterior mean as∑

i

piµ̃i(∆l̂k) (41)

=
∑
i

piµi +
∑
i

pi
Σi,k

σ2
k

(∆l̂k − µk) (42)

=
∑
i

piµi − aβτk
∑
i

piσirik, (43)

where rik is the Pearson correlation coefficient. The first
item in Eq. 43 and the factor a are constant for all k, thus
the selection strategy becomes

k1 = argmax
k

βτk
∑
i

piσirik, (44)

which is Eq. 39.
Then we deduce Eq. 40 for selecting k2. We can calculate

the posterior covariance conditioned on ∆l̂k1
as

Σ̃i,j(∆l̂k1) = Σi,j −
Σi,k1

Σk1,j

σ2
k1

(45)

= σiσj(rij − rik1
rk1j) (46)

σ̃i(∆l̂k1) =

√
Σ̃i,i(∆l̂k1) (47)

= σi

√
1− r2ik1

. (48)

We substitute the posterior covariance into the simplified
selection criterion in Eq. 44 and get

βτk′
∑
i

pi
Σ̃i,k′(∆l̂k1

)

σ̃k′(∆l̂k1
)

=
βτk′

[∑
i piσirik′ − rk1k′

∑
i piσirik1

]
√

1− r2k′k1

.

(49)



So we have Eq. 40:

k2 = argmax
k′

βτk′
[∑

i piσirik′ − rk1k′
∑

i piσirik1

]
√
1− r2k′k1

.

(50)

B. Selection Criterion and Convergence Analy-
sis

In this section, we will analyse FedCor when selecting
arbitrary number of clients. While the iterative client selec-
tion makes it obscure to analyse the convergence, we will
show that we can construct a simpler proxy algorithm who
can approximate the selection strategy of FedCor and there
for share similar convergence characteristic. We will prove
the convergence of this proxy algorithm.

B.1. Definitions

We first introduce some important definitions. In the fol-
lowing analysis, We denote the client selection sampled from
FedCor as Kt ∼ π and client selection sampled uniformly
as Kt ∼ U .

In the j-th iteration of FedCor, we select a client kj to
minimize the posterior mean of the loss change. Since the
prior mean in each iteration is fixed, we can say that we are
maximizing the decrease from prior mean µt,j to posterior
mean µ̃t,j . We define the posterior gain of this iteration as
the decrease from prior mean to posterior mean, namely,

gt,j(kj) =
∑
i

pi(µ
t,j
i − µ̃t,j

i (∆l̂tkj
)) (51)

= αt
kj

∑
i

piσ
t,j
i rt,jikj

. (52)

We define µt,1 = µt and Σt,1 = Σt. And for j > 1 we
have

µt,j = µ̃t,j−1(∆l̂tkj−1
), Σt,j = Σ̃t,j−1(∆l̂tkj−1

).

(53)

With Lemma 2, we get

gt,j(kj) =
gt,j−1(kj)−

αt
kj

αt
kj−1

rt,j−1
kj−1kj

gt,j−1(kj−1)√
1− rt,j−1

kj−1kj

2
.

(54)

With this notation, we can simplify our selection strategy as
follows.

k∗j = argmax
kj

gt,j(kj). (55)

We further define the one-round advantage of FedCor
compared with uniform sampling as follows.

At =EKt∼U [L(w
t+1)− L(wt)]−

EKt∼π[L(w
t+1)− L(wt)] (56)

=

C∑
j=1

gt,j(k∗j ). (57)

The second equation directly arises from the definition of
our prior distribution where EKt∼U [L(w

t+1) − L(wt)] =∑
i µ

t
i.

Unfortunately, because of the iterative selection, the selec-
tion criterion of kj depends on the previous selected clients,
which makes a quantitatively analysis complicated. To by-
pass this difficulty, we will first point out that At has a lower
bound that is tight in some special cases. We find that a
proxy client selection strategy that maximizes this lower
bound has a similar but simpler behaviour compared with
FedCor, and we will also give a convergence guarantee of
the proxy algorithm.

B.2. Approximation of FedCor

An important property of FedCor is that it prefers clients
who have lower correlations with those selected in the previ-
ous iteration, since

∀rt,j−1
kj−1kj

∈ (−1, 1), ∂g
t,j(kj)

∂rt,j−1
kj−1kj

< 0. (58)

We further predict that FedCor tends to select clients that
with rt,j−1

kj−1kj
close to 0 instead of rt,j−1

kj−1kj
< 0 because if

rt,j−1
kj−1kj

< 0, kj should be far away from kj−1 who is closed
to other clients in the embedding space, which makes kj has
low correlation with the other clients and not be selected.
Therefore, we can infer that FedCor will select a group of
clients who have nearly zero correlations with each other,
which simplifies the expression of gt,j(kj) to gt,1(kj).

Based on the analysis above, we define a proxy algorithm
π̃ who maximize the following objective.

Ãt =

C∑
kj∈Kt

gt,1(kj) ≈
∑
k∈Kt

∑
i

piΣ
t
i,k, (59)

where we further omit the difference of αt
k and σt

k for dif-
ferent client k. We can use the client selection generated by
this proxy algorithm to approximate the client selection of
FedCor, and thus they share similar convergence characteris-
tic.

In the following section, we will show that this proxy
algorithm has a good property that enable it to converge to
the optimal solution of the global loss L without gap, even it
is a biased selection strategy.



B.3. Convergence Analysis of the Proxy Algorithm

In the following section, we denote the client selection
sampled from the proxy client selection strategy as Kt ∼
π̃. We use E[·] as the expectation over the mini-batch and
EKt

[·] as the expectation over the client selection strategy.
We first give the common assumptions used in Federated
Learning [4, 19].

Assumption 3. l1, l2, · · · , lN are all M -smooth: for all v
and w, lk(v) ≤ lk(w) + (v−w)T∇lk(w) + M

2 ∥v−w∥22.

Assumption 4. l1, l2, · · · , lN are all m-strongly convex: for
all v and w, lk(v) ≥ lk(w) + (v−w)T∇lk(w) + m

2 ∥v−
w∥22.

Assumption 5. For the mini-batch ξk ∈ Dk sampled uni-
formly on each client k ∈ U, the variance of stochastic
gradients is bounded: E∥∇lk(wk, ξk)−∇lk(wk)∥2 ≤ s2k.

Assumption 6. For each client k ∈ U and any commu-
nication round t, the expected squared norm of stochastic
gradients is uniformly bounded: E∥∇lk(wk, ξk)∥2 ≤ G2.

For concision, we omit E in the following content and
apply an expectation over the mini-batch by default.

Now we give an important property of the proxy algo-
rithm that will be used for proving the convergence.

Lemma 3. In any communication round t, with Assump-
tion 1 and Assumption 2 holds, we have

Kt ∼ π̃ = argmax
K

(BT∇L(wt))T
∑
k∈K

BT∇lk(wt).

(60)

Proof. In the proxy algorithm, we have

Kt =argmax
K

∑
k∈Kt

∑
i

piΣ
t
i,k (61)

=argmax
K

η2t
C

∑
k∈K

∑
i

pi∇li(wt)BBT∇lk(wt) (62)

=argmax
K

(BT∇L(wt))T
∑
k∈K

BT∇lk(wt). (63)

Eq. 62 comes from the expression of Σt in Corollary 1, and
Eq. (63) arises from L(wt) =

∑
i pili(w

t).

To connect this property with the convergence of the
algorithm, we first define a sequence and show that the con-
vergence of this sequence is equivalent to the convergence
of the algorithm with this property. We define Sequence ∆t

as follows.

∆t = EKt∼π̃∥wt −w∗
Kt
∥2, (64)

where

w∗
Kt

= argmin
w

∑
k∈Kt

lk(w). (65)

We now show that if ∆t → 0, we have w → w∗.

Corollary 3. (Optimal Solution Consistency) If ∆t con-
verges to 0, there must be wt converges to w∗.

lim
t→∞

∆t = 0⇒ lim
t→∞

wt = w∗ (66)

Proof. With Kt ∼ π̃, we have

lim
t→∞

∆t = 0 (67)

⇒ lim
t→∞

wt = w∗
Kt

(68)

⇒ lim
t→∞

∑
k∈Kt

∇lk(wt) = 0 (69)

⇒ lim
t→∞

(BT∇L(wt))T
∑
k∈Kt

BT∇lk(wt) = 0. (70)

Since

Kt = argmax
K

(BT∇L(wt))T
∑
k∈K

BT∇lk(wt), (71)

If limt→∞ BT∇L(wt) ̸= 0 or does not converge, we can
say that

∀ϵ > 0,∃τ,∀t > τ, ∀K, (72)

(BT∇L(wt))T
∑
k∈K

BT∇lk(wt) ≤ ϵ, (73)

which cannot be true since

EK∼U
∑
k∈K
∇lk(wt) = C∇L(wt). (74)

Thus we conclude that

lim
t→∞

BT∇L(wt) = 0. (75)

If the Gaussian Distribution in Assumption 1 is non-
degenerate, we have

lim
t→∞

∇L(wt) = 0⇒ lim
t→∞

wt = w∗ (76)

We now only need to prove the convergence of ∆t, which
will imply the convergence of the proxy algorithm according
to Corollary 3. We first introduce one extra assumption as
well as two lemmas that will be used in the proof.

For convenient, we define LKt(w) = 1
C

∑
k∈Kt

lk(w),
and thus w∗

Kt
= argminw LKt(w). Notice that Kt ∼ π̃

only depends on Σt, thus we can say that w∗
Kt

is given by a
function of Σt, i.e., w∗

Kt
= Ω(Σt). We further assume the

smoothness of Ω:

Assumption 7. For any t, E∥w∗
Kt+1

− w∗
Kt
∥2 =

E∥Ω(Σt+1) − Ω(Σt)∥2 ≤ δE∥Σt+1 −Σt∥1, where ∥ · ∥1
is the ℓ1 norm of a vector.



Now we introduce a lemma that bounds E∥Σt+1 −Σt∥1.

Lemma 4. Assume Assumption 1, Assumption 3 and As-
sumption 6, if E∥wt −wt+1∥2 ≤ q2t , we have

E∥Σt+1 −Σt∥1 ≤
bN2

C
[η2t (G+Mqt)

2 − η2t+1G
2],

(77)

where b is the largest eigenvalue of BBT .

Proof. According to Assumption 1, we have

Σi,j =
η2t
C
∇lti

T
BBT∇ltj . (78)

And we can calculate∣∣Σt+1
i,j − Σt

i,j

∣∣ (79)

=
∣∣∣η2t
C

(∇lt+1
i

T
BBT∇lt+1

j −∇lti
T
BBT∇ltj)+

η2t+1 − η2t
C

∇lt+1
i

T
BBT∇lt+1

j

∣∣∣ (80)

≤η2t
C

∣∣∣∇lt+1
i

T
BBT∇lt+1

j −∇lti
T
BBT∇ltj

∣∣∣+
η2t − η2t+1

C

∣∣∣∇lt+1
i

T
BBT∇lt+1

j

∣∣∣ . (81)

We now bound each term in Eq. (81) separately. For the first
term, ∣∣∣∇lt+1

i

T
BBT∇lt+1

j −∇lti
T
BBT∇ltj

∣∣∣ (82)

=
∣∣∣(∇lt+1

i −∇lti)TBBT∇ltj+

∇lti
T
BBT (∇lt+1

j −∇ltj)+

(∇lt+1
i −∇lti)TBBT (∇lt+1

j −∇ltj)
∣∣∣ (83)

≤b
(
∥∇lt+1

i −∇lti∥∥∇ltj∥+

∥∇lt+1
j −∇ltj∥∥∇lti∥+

∥∇lt+1
i −∇lti∥∥∇lt+1

j −∇ltj∥
)

(84)

≤b
[
M∥wt+1 −wt∥(∥∇ltj∥+ ∥∇lti∥)+

M2∥wt+1 −wt∥2
]
, (85)

where b is the largest eigenvalue of BBT . For the second
term,∣∣∣∇lt+1

i

T
BBT∇lt+1

j

∣∣∣ ≤ b∥∇lt+1
i ∥∥∇lt+1

j ∥. (86)

We take the expectation over both sides and with Cauchy-
Schwarz inequality, we get

E
∣∣Σt+1

i,j − Σt
i,j

∣∣ (87)

≤η2t
C

b
[
M

√
E∥wt+1 −wt∥2E∥∇ltj∥2+

M
√

E∥wt+1 −wt∥2E∥∇lti∥2+

M2E∥wt+1 −wt∥2
]
+

η2t − η2t+1

C
b
√

E∥∇lt+1
i ∥2E∥∇lt+1

j ∥2 (88)

≤η2t b

C
(G2 + 2MqtG+M2q2t )−

η2t+1

C
bG2 (89)

And we have

E∥Σt+1 −Σt∥1 (90)

=

N∑
i,j

E
∣∣Σt+1

i,j − Σt
i,j

∣∣ (91)

≤bN2

C
[η2t (G+Mqt)

2 − η2t+1G
2] (92)

We will also use the following lemma that is proved by
[19].

Lemma 5. Assume Assumption 3 to 6. If ηt ≤ 1
4M , with full

and balanced participation in FedAvg, in any communication
round t and its i-th iteration, we have

E∥w̄t,i+1 −w∗∥2 ≤ (1− ηtm)E∥w̄t,i −w∗∥2 + η2tF,
(93)

where

F =
1

N

N∑
k=1

s2k + 6MΓ + 8(E − 1)2G2, (94)

Γ = L∗ − 1

N

N∑
k=1

l∗k. (95)

Here, w̄t,i = 1
N

∑N
k=1 w

t,i
k , and wt,i

k is the local weight
at the i-th iteration of communication round t. E is the
total number of local training iterations. L∗ = L(ω∗) and
l∗k = lk(ω

∗
k) are the optimal value of L and lk, respectively.

Now we give the theorem of the convergence of ∆t and
prove it.

Theorem 1. With Assumption 1 to 7 holds, with learning
rate ηt = β

t+γ for some β > 1
m and γ > 0 such that

η1 ≤ min{ 1
m , 1

4M } =
1

4M , we have

∆t ≤
ν

γ + t
, (96)



where

ν = max{β
2(F̃ + D̃)

βm− 1
, (γ + 1)∆1}, (97)

F̃ = 2Emax
t

Ft, (98)

Ft =
1

C

∑
k∈Kt

s2k + 6MΓt + 8(E − 1)2G2, (99)

Γt = L∗
Kt
− 1

C

∑
k∈Kt

l∗k, (100)

D̃ = (
1

m
+

1

4M
)δD, (101)

D =
bN2

C
(2mG2 + 2MEG+

1

4
ME2G2). (102)

Proof. For Kt ∼ π̃(wt) and Kt+1 ∼ π̃(wt+1), we have

∆t+1 =∥wt+1 −w∗
Kt+1
∥2 (103)

=∥wt+1 −w∗
Kt
∥2 + ∥w∗

Kt
−w∗

Kt+1
∥2+

2⟨wt+1 −w∗
Kt
,w∗

Kt
−w∗

Kt+1
⟩ (104)

≤∥wt+1 −w∗
Kt
∥2 + ∥w∗

Kt
−w∗

Kt+1
∥2+

ηtm∥wt+1 −w∗
Kt
∥2+

1

ηtm
∥w∗

Kt
−w∗

Kt+1
∥2 (105)

≤(1 + ηtm)∥wt+1 −w∗
Kt
∥2+

(1 +
1

ηtm
)δ∥Σt+1 −Σt∥1, (106)

where Eq. 105 arises from AM-GM inequality and Eq. 106
arises from Assumption 7.

For the first term in Eq. 106, we can bound it by Lemma 5
as follows. The key point here is that when training in one
communication round t, we can view this round a small FL
process with clients in Kt fully participating. In this view,
the global loss and the optimal global weight becomes LKt

and w∗
Kt

instead. Thus we can apply Lemma 5 directly to
bound ∥wt+1 − w∗

Kt
∥2. With ηt ≤ 1

4M ≤ 1
m , we have

ηtm ≤ 1 and 1 + ηtm ≤ 1
1−ηtm

, and we can get

(1 + ηtm)∥wt+1 −w∗
Kt
∥2 (107)

=(1 + ηtm)[∥w̄t,E −w∗
Kt
∥2] (108)

≤(1 + ηtm)[(1− ηtm)∥w̄t,E−1 −w∗
Kt
∥2 + η2tFt] (109)

≤(1 + ηtm){(1− ηtm)2∥w̄t,E−2 −w∗
Kt
∥2+

[1 + (1− ηtm)]η2tFt} (110)
· · ·

≤(1 + ηtm)
{
(1− ηtm)E∥w̄t,0 −w∗

Kt
∥2+

[1 + (1− ηtm) + · · ·+ (1− ηtm)E−1]η2tFt

}
(111)

≤(1− ηtm)E−1∥wt −w∗
Kt
∥2+

(1 + ηtm)
1− (1− ηtm)E

m
ηtFt (112)

≤(1− ηtm)∥wt −w∗
Kt
∥2 + (1 + ηtm)Eη2tFt (113)

≤(1− ηtm)∥wt −w∗
Kt
∥2 + 2Eη2tFt, (114)

where

Ft =
1

C

∑
k∈Kt

s2k + 6MΓt + 8(E − 1)2G2, (115)

Γt = L∗
Kt
− 1

C

∑
k∈Kt

l∗k. (116)

Eq. 114 arises from the inequality 1−Ex ≤ (1−x)E ≤ 1−x
for x ∈ [0, 1].

We now turn to bound the second term in Eq. 106. We
first find the qt in Lemma 4.

∥wt+1 −wt∥2 =∥ 1
C

∑
k∈Kt

wt,E
k −wt∥2 (117)

≤ 1

C

∑
k∈Kt

∥wt,E
k −wt∥2 (118)

=
η2t
C

∑
k∈Kt

∥
E−1∑
i=0

∇lk(wt,i
k )∥2 (119)

≤η2tE

C

∑
k∈Kt

E−1∑
i=0

∥∇lk(wt,i
k )∥2 (120)

≤η2tE

C

∑
k∈Kt

E−1∑
i=0

G2 (121)

≤η2tE

C

∑
k∈Kt

EG2 (122)

=η2tE
2G2 = q2t , (123)

where Eq. 118 and Eq. 120 comes from Jensen inequal-
ity, and Eq. 121 comes from Assumption 6. With Lemma



Lemma 4, we get

∥Σt+1 −Σt∥1 ≤
bN2

C
[G2(η2t − η2t+1)+ (124)

2MEGη3t +M2E2G2η4t )]. (125)

Further with a diminishing ηt =
β

t+γ , we have

η2t − η2t+1 =β2(
1

(t+ γ)2
− 1

(t+ 1 + γ)2
) (126)

=β2 2(t+ γ) + 1

(t+ γ)2(t+ 1 + γ)2
(127)

≤ 2β2

(t+ γ)3
(128)

=
2η3t
β

, (129)

and with β > 1
m , ηt ≤ η1 ≤ 1

4M , we get

∥Σt+1 −Σt∥1 (130)

≤bN2η3t
C

(
2G2

β
+ 2MEG+M2E2G2ηt) (131)

≤bN2η3t
C

(2mG2 + 2MEG+
1

4
ME2G2) (132)

=η3tD, (133)

where

D =
bN2

C
(2mG2 + 2MEG+

1

4
ME2G2). (134)

With Eq. 114 and Eq. 133, we have

∆t+1 ≤(1− ηtm)∆t + 2Eη2tFt + (1 +
1

ηtm
)η3t δD

(135)

≤(1− ηtm)∆t + η2t (2EFt +
δ

m
D) + η3t δD

(136)

≤(1− ηtm)∆t + η2t (F̃ + D̃), (137)

where

F̃ = 2Emax
t

Ft, (138)

D̃ = (
1

m
+

1

4M
)δD. (139)

Now we can use the same trick in [19] to finish the proof
of convergence. With a diminishing learning rate, ηt = β

t+γ

for some β > 1
m and γ > 0 such that η1 ≤ min{ 1

m , 1
4M } =

1
4M , we will prove by induction that ∆t ≤ ν

γ+t , where

ν = max{β
2(F̃+D̃)
βm−1 , (γ + 1)∆1}.

With the definition of ν, we ensure that ∆1 ≤ ν
γ+1 . Now

we assume that ∆t ≤ ν
γ+t holds for some t, we have

∆t+1 ≤(1− ηtm)∆t + η2t (F̃ + D̃) (140)

≤(1− βm

t+ γ
)

ν

t+ γ
+

β2(F̃ + D̃)

(t+ γ)2
(141)

=
t+ γ − 1

(t+ γ)2
ν +

[β2(F̃ + D̃)

(t+ γ)2
− βm− 1

(t+ γ)2
ν
]

(142)

≤ t+ γ − 1

(t+ γ − 1)2 + 2(t+ γ)− 1
ν (143)

≤ t+ γ − 1

(t+ γ − 1)2 + 2(t+ γ − 1)
ν (144)

≤ ν

t+ γ + 1
. (145)

Eq. 143 also arises from the definition of ν that β2(F̃+D̃) ≤
(βm − 1)ν. Accordingly, for all t, we have ∆t ≤ ν

γ+t
holds.

With this result, we prove that ∆t converges to 0 with
convergence rate O( 1

T ), and thus we can say that the proxy
algorithm of FedCor converges to the global optimal with
convergence rate O( 1

T ) with Corollary 3.

C. Experiment Details
We simulate the training process of federated learning

on one machine. All experiments in this paper are run on
one NVIDIA 2080-Ti GPU and two Intel Xeon E5-2630 v4
CPUs. The experiments on FMNIST require around 3 hours
for each seed, and the experiments on CIFAR-10 require
around 10 hours for each seed.

C.1. Model Parameters

Hyperparameters in FMNIST We follow [4] to construct
the neural model on FMNIST: An MLP model with two
hidden layers with 64 and 30 units, respectively. Under
all three heterogeneous settings, we set the local batch size
B = 64 and the number of local iterations E = 20. The
learning rate η0 is set to 0.005 initially, and halved at the
150-th and 300-th rounds. An SGD optimizer with a weight
decay of 0.0001 and no momentum is used. We allocate
data to N = 100 clients, and set the participation fraction
C = 10 for the 1SPC setting, and C = 5 for the 2SPC and
Dir settings.

Hyperparameters in CIFAR-10 We use a CNN with three
convolutional layers [29] with 32, 64 and 64 kernels, re-
spectively. And all convolution kernels are of size 3 × 3.
Finally, the outputs of convolutional layers are fed into a
fully-connected layer with 64 units. Under all three hetero-
geneous settings, we set the local batch size B = 50 and the



number of local iterations E = 40. We use a learning rate
η = 0.01 without learning rate decay, and a weight decay of
0.0003 for the SGD optimizer. The total number of clients
and the client participation fraction are the same as those in
FMNIST.

Hyperparameters for FedCor We set the dimension of
client embedding d = 15 for all experiments. In Eq. (16),
we set M = 10, S = 1 for the warm-up phase, and M =
1, S = 1 for the normal phase. And we set the discount
factor γ = θ∆t where θ = 0.9 for experiments on FMNIST
and θ = 0.99 for experiments on CIFAR-10. In each GP
update round t, we use Xt−1 as the initialization and use an
Adam optimizer [11] with learning rate 0.01 to optimize for
Xt. Notice that although Eq. (16) has a closed form optimal
solution for Xt, we still learn Xt with the gradient decent
method with the initialization Xt−1 in order to utilize the
covariance stationarity and reduce the evaluation bias with
small number of samples.

Hyperparameters for other baselines We use the same
parameters α1 = 0.75, α2 = 0.01 and α3 = 0.1 as those
in the paper [6] for Active Federated Learning. And we set
d = 2NC for Power-of-choice Selection Strategy, which
is empirically shown to be the best value of d in a highly
heterogeneous setting in the paper [4].

Note that we implement the random selection strategy as
uniformly sampling clients from U without replacement [23],
while Cho et al. [4] implement the random selection strat-
egy as sampling clients with replacement. Thus, our im-
plemented random selection strategy achieves better perfor-
mances than their implementation.

C.2. Dirichlet Distribution for Data Partition

We follow the idea in [7] to construct the Dir heteroge-
neous setting, while we make some modifications to get an
unbalanced non-identical data distribution.

For each client k, we sample the data distribution qk ∈
R10 from a dirichlet distribution independently, which could
be formulated as

qk ∼ Dir(αp), (146)

where p is the prior label distribution and α ∈ R+ is the
concentration parameter of the dirichlet distribution. We
group qk of all the clients together and get a fraction matrix
Q = [q1, · · · , qn]. We denote the size of dataset on each
client as x = [x1, · · · , xN ]T and we get it from a solution
of a quadratic programming:

min
x

xTx (147)

subject to Qx = d (148)

x ∈ RN
++, (149)

where d is the number of data with each label. We min-
imize ∥x∥2 to avoid the cases where data distribution is
over-concentrated on a small fraction of clients. In that case,
the client selection problem might become trivial, since we
can always ignore those clients with a small dataset and
select those with a large dataset.

D. Extra Experimental Results
D.1. Ablation Study: Annealing Coefficient

We conduct experiments on FMNIST and CIFAR-10 with
different annealing coefficient β. We setup our experiments
under three heterogeneous settings as in Section 5, with
different annealing coefficient β (β = 0.95, 0.75, 0.5 for
FMNIST and β = 0.97, 0.95, 0.9 for CIFAR-10). We fix
the GP training interval ∆t to 10 for FMNIST and 50 for
CIFAR-10. The test accuracy curves are shown in Figure 8.
We can see that within a large range, the value of annealing
coefficient only slightly influence the convergence rate as
well as the final accuracy. Recalling the results of different
GP training intervals ∆t in Section 5.3, we can say that our
method is not sensitive to the hyperparameters ∆t and β.

We present the selected frequency of each client in Fig-
ure 10 and Figure 11 for FMNIST and CIFAR-10 respec-
tively. We can see that with a smaller β, the selected fre-
quency tends to be more “uniform”. However, this does not
mean that our selection strategy is equivalent to the uniformly
random selection. Our sequential selection strategy intro-
duces dependencies between selected clients as discussed
in the multi-iteration insights in Section 4.3, which makes
our selection strategy prefer some combinations of selected
clients to others, while the uniformly random selection treats
all the combinations equally. The advantage shown in Fig-
ure 8 compared to the uniformly random strategy demon-
strates that selecting a good combination of clients, not only
a good individual, is important.

D.2. Normality Verification

We setup experiments to show that Gaussian Distribution
can model the loss changes w.r.t. uniformly sampled client
selection. To verify this, in the last round of the warm-up
phase, we perform the following procedure to examine the
normality.

1. We uniformly sample 1000 different client selections
{St,i : i = 1, · · · , 1000} and collect the corresponding
loss changes ∆lt(St,i) = [∆lt1(St,i), · · · ,∆ltN (St,i)]
for each of them.

2. We perform PCA on {∆lt(St,i) : i = 1, · · · , 1000} to
extract the principle components.

3. We plot the histogram of each principle component and
compare its distribution with the Gaussian Distribution.



Figure 8. Test accuracy with different annealing coefficient β on FMNIST (top) and CIFAR-10 (bottom) under three heterogeneous settings
(left: 2SPC; median: 1SPC; right: Dir).

Figure 9. Verification of covariance stationarity on FMNIST and CIFAR-10.

We do not use Multivariate Normality Test directly because
we find that Σt is always nearly singular, which makes
the Multivariate Normality Test unstable. Thus, we turn
to perform PCA and visualize each principle component to
verify the normality.

The results of FMNIST and CIFAR-10 are shown in Fig-
ure 12 and Figure 13 respectively. The red line shows the
probability density of Gaussian Distribution with the mean
and variance of that principle component. We can see that in
all our experiments, Gaussian Distribution can fit the distri-
bution of the principle component well, which verifies that
Lemma 1 does hold in all the experiment settings.

D.3. Covariance Stationarity Verification

We examine that assumption in Section 4.5 that the covari-
ance keep approximately stationary during the FL training,
namely,

∀t,Σt ≈ Σt+∆t. (150)

To verify this, every ∆t rounds (∆t = 10 for FMNIST and
∆t = 50 for CIFAR-10), we randomly sample 1000 client
selections Ki and collect the corresponding loss changes
∆lt(Ki). We directly calculate the covariance matrix Σt

with these samples {∆lt(Ki) : i = 1, · · · , 1000}. Then for
each adjacent pair of covariance matrix, we calculate their
cosine similarity as follows.

similarity(Σt,Σt+∆t) =
tr(ΣtTΣt+∆t)

tr(ΣtTΣt)tr(Σt+∆tTΣt+∆t)
(151)

The similarity is in range [0, 1], and a larger one shows a
higher similarity.

The results are shown in Figure 9. We can see that in
most cases the similarity is larger than 0.9, which verifies
our claim of the covariance stationarity.



Figure 10. Selected Frequency of each client with different annealing coefficient β on FMNIST under three heterogeneous settings (top:
2SPC; median: 1SPC; bottom: Dir).

Figure 11. Selected Frequency of each client with different annealing coefficient β on CIFAR-10 under three heterogeneous settings (top:
2SPC; median: 1SPC; bottom: Dir).
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Figure 12. Normality Test on FMNIST.
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Figure 13. Normality Test on CIFAR-10.


