
Few-Shot Font Generation by Learning Fine-Grained Local Styles
(Supplementary Materials)

Licheng Tang1* Yiyang Cai2∗ Jiaming Liu1†, Zhibin Hong1 Mingming Gong3

Minhu Fan1 Junyu Han1 Jingtuo Liu1 Errui Ding1 Jingdong Wang1

1Baidu Inc. 2University of California, Berkeley 3University of Melbourne
{tanglicheng,liujiaming03,hongzhibin,fanminhu,liujingtuo,dingerrui,wangjingdong}@baidu.com

frank cai@berkeley.edu, mingming.gong@unimelb.edu.au

A. Implementation Details
A.1. Reference Selection

In this section, we will discuss the implementation de-
tails of reference selection, which can be divided into two
steps: reference set determination and content-reference
mapping.

Reference set determination As mentioned in paper’s
section 3.4, our target is to search for a reference glyph
set which covers the most conspicuous-level components,
and our detailed algorithm can be demonstrated by Algo-
rithm 1. In our algorithm, X denotes the entire charac-
ter list sorted by glyphs’ occurrence frequency, whose total
capacity is 20K. T denotes the single level decomposition
look-up tables for all characters in X . For one key xi in T ,
their corresponding value χi is a subset of X , consisting of
their decomposing components’ name list and correspond-
ing decomposing form. By exploring this components list,
we employ breadth first search to recursively obtain all the
components at different levels, which forming the compo-
nent tree in our work. C denotes the set that contains all
conspicuous-level components, whose total capacity is 374.
Nref denotes the total capacity of our target reference set,
which is is fixed to 100 in our experiments.

As an initialization, we set our target reference set Û and
corresponding covering components Ĉ as ∅. Then we be-
gin searching process in X . For every glyph xi in X , we
obtain its conspicuous-level components ci via the function
searchComponents in 1. If there is unique components in ci
which is not in current component pool Ĉ, we regard this
glyph xi as our target reference glyph, and we add it and its
unique components to Û and Ĉ respectively. In our experi-
ment, we ensure that every latest adding reference have 2 or
more unique components. Once the capacity of Û reaches
Nref , we terminate the searching process.

Content-reference mapping Since we have determined

*Equal contribution.
†Corresponding author.

Algorithm 1: Reference set selection
input : X = {xi}: Common-used glyph list.

T = {xi : χi}: Single-level decomposition
look-up table. χi ⊂ X .
C: Conspicuous-level component set.
Nref : Max capacity of Reference set.
d: Max search depth in component tree.

output: Û : Reference set.
Ĉ: All components which U can cover.

Function searchComponents(xi):
queue← {xi}; i← 0; ci ← ∅

repeat
queue∗ ← ∅
for x ∈ queue do

queue∗ ← queue∗ ∪ T (x)
ci ← T (x) ∩ C

end
queue← queue∗; i← i+ 1

until i ≥ d;
return ci

End Function

Function Main():
Û ← ∅; Ĉ ← ∅
for xi ∈ X do

ci ← searchComponents(xi)
if ∃ĉ ∈ ci s.t. ĉ /∈ Ĉ then Ĉ ← Ĉ ∪ ci,
add xi to Û ;

if Len(Û ) ≥ Nref then break;
end
return Û , Ĉ

End Function

the reference set. It’s more convenient for us to find the
mapping relationship between a arbitrary glyph and its ref-

1



Figure 1. Structures of the Convolution Block and the Residual
Block in Tab.1

erences whose conspicuous components are in common.
For k-shot reference mapping (one content glyph corre-
sponds to k style references), we do the following search-
ing process for k times: We find the glyph in reference set
which share the most conspicuous component, and remove
it from the original reference set. If there is multiple choice,
we leave the one whose component’s composition form is
the same with the content glyph.

We show some of the finding mappings between content
and references in Fig. 2.

A.2. Model Architecture

Our entire model can be divided into two parts: the
generator and discriminator. Both of them are built up of
two typical types of blocks: the Convolution block and the
Residual block, which are illustrated in Fig 1. The Resid-
ual block contains two identical Convolution blocks. Since
the Residual block has its own downsampling operator, its
Convolution blocks skip the downsampling step.

Generator As mentioned in our method, the generator
model consists of three respective modules: reference en-
coder Er, content encoder Ec, and decoder D. Both Er and
Ec are also made up of the following two types of blocks:
the Convolution block and Residual block. The detailed ar-
chitecture is illustrated in Table. 1. In D, every Convolution
block is followed by a spectral normalization.

Discriminator The discriminator is also made up of the
Convolution block and the Residual block. The detailed ar-
chitecture is illustrated in Table. 1.

A.3. Training details

We use Adam optimizer to optimize the FSFont’s param-
eters. The generator and discriminator’s learning rates are
0.0002 and 0.0008, respectively. Kaiming initialization is

applied for the model. During training, by default we set the
reference to be 3-shot for training. If one glyph’s reference
set’s capacity is less than 3, we duplicate one of reference
glyph until the capacity equals to 3 for purpose of batch
training. In our proposed SAM, empirically we set number
of attention heads to be 8 and batch size to be 32. We train
our model with full objective function for 500k iterations.

B. Additional Experimental Results
In Fig.2, we demonstrate more experimental results on

unseen fonts. The results show that FSFont can deal with
variant font styles, including typewriter fonts, artistic fonts,
and handwriting fonts. In addition, we show the content
font we used in our experiment in Fig.3.

We also demonstrate more visualization results about the
attention maps in Fig. 4. We show the attention maps on
characters with variant structures. It is shown that the atten-
tion is able to capture the correct correspondence in differ-
ent structures.

C. User Study Examples
We show the sample images used for the user study in

Fig.5 and Fig.6. A content image, a reference set, and
shuffled results from five methods, i.e. FUNIT [2], AGIS-
Net [1], LF-Font [3], DFFont [5], MX-Font [4], and FSFont,
are displayed to users for every query. Users are required to
choose the most consistent one according the style of the
reference set. As the orders of the methods are shuffled, we
also provide the answers for each case.

References
[1] Jie Chang, Yujun Gu, Ya Zhang, Yan-Feng Wang, and CM

Innovation. Chinese handwriting imitation with hierarchical
generative adversarial network. In BMVC, page 290, 2018. 2

[2] Ming-Yu Liu, Xun Huang, Arun Mallya, Tero Karras, Timo
Aila, Jaakko Lehtinen, and Jan Kautz. Few-shot unsupervised
image-to-image translation. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 10551–
10560, 2019. 2

[3] Song Park, Sanghyuk Chun, Junbum Cha, Bado Lee, and
Hyunjung Shim. Few-shot font generation with local-
ized style representations and factorization. arXiv preprint
arxiv:2009.11042, 2020. 2

[4] Song Park, Sanghyuk Chun, Junbum Cha, Bado Lee, and
Hyunjung Shim. Multiple heads are better than one: Few-
shot font generation with multiple localized experts. arXiv
preprint arXiv:2104.00887, 2021. 2

[5] Yangchen Xie, Xinyuan Chen, Li Sun, and Yue Lu. Dg-
font: Deformable generative networks for unsupervised font
generation. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 5130–5140,
2021. 2



Reference Encoder Er

Layer Type Normalization Activation Paddding Kernel Size Stride Downsample Feature maps

Convolution block IN ReLU 1 3 1 - 32
Convolution block IN ReLU 1 3 1 AvgPool 64
Convolution block IN ReLU 1 3 1 AvgPool 128
Residual block IN ReLU 1 3 1 - 128
Residual block IN ReLU 1 3 1 - 128
Residual block IN ReLU 1 3 1 AvgPool 256
Residual block IN ReLU 1 3 1 - 256
Output Layer - Sigmoid - - - - 256

Content Encoder Ec

Layer Type Normalization Activation Paddding Kernel Size Stride Downsample Feature maps

Convolution block IN ReLU 1 3 1 - 32
Convolution block IN ReLU 1 3 2 - 64
Convolution block IN ReLU 1 3 2 - 128
Convolution block IN ReLU 1 3 2 - 256
Convolution block IN ReLU 1 3 1 - 256

Decoder D

Layer Type Normalization Activation Paddding Kernel Size Stride Upsample Feature maps

Residual block IN ReLU 1 3 1 - 256
Residual block IN ReLU 1 3 1 - 256
Residual block IN ReLU 1 3 1 - 256
Convolution block IN ReLU 1 3 1 Nearest 128
Convolution block IN ReLU 1 3 1 Nearest 64
Convolution block IN ReLU 1 3 1 Nearest 32
Convolution block IN ReLU 1 3 1 - 1
Output Layer - Sigmoid - - - - 1

Discriminator D

Layer Type Normalization Activation Paddding Kernel Size Stride Downsample Feature maps

Convolution block IN - 1 3 2 - 32
Residual block IN ReLU 1 3 1 AvgPool 64
Residual block IN ReLU 1 3 1 AvgPool 128
Residual block IN ReLU 1 3 1 AvgPool 256
Residual block IN ReLU 1 3 1 - 256
Residual block IN ReLU 1 3 1 AdaAvgPool 512
Output layer Multi-task embedding

Table 1. Architecture of the generator modules Er , Ec, D and the discriminator. Convolution block and Residual block denote the
module mentioned in Fig 1. IN denotes instance normalization. All padding operation is zero-padding. AvgPool and AdaptiveAvgPool
denotes average pooling and adaptive average pooling. In discriminator’s output layer, we use two embedding operators to embed the
output feature map into two prediction vector of the font style and the character’s name.



Figure 2. More Results. This Figure shows the Content-Reference mapping and generated results on all test fonts.



Figure 3. The content font we used in our experiment.



Figure 4. Visualization on Attention maps. This Figure shows the attention maps given the different regions in content glyph.



Figure 5. User studies on UFSC (unseen font seen character) data. This Figure shows how do we conduct the user study.



Figure 6. User studies on UFUC (unseen font unseen character) data. This Figure shows how do we conduct the user study.


	. Implementation Details
	. Reference Selection
	. Model Architecture
	. Training details

	. Additional Experimental Results
	. User Study Examples

