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Figure 1. The structure of our feature pyramid network equipped
with ResNet-50.

1. Implementation Details
1.1. Network Architecture

Our proposed transformer-based architecture is com-
posed of a backbone network, a feature sampling network,
and a feature grouping network.

The backbone is the basic feature pyramid network
(FPN) [8] equipped with ResNet-50 [6] as shown in Fig. 1,
The produced feature maps in three different scales (i.e.
1/4, 1/8, 1/16) are used for feature sampling.

As shown in Fig. 2, each feature map is first fed into
a Coord-Convolution layer [9] to involve position infor-
mation for the incoming presentation in our feature sam-
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Figure 2. The pipeline of feature sampling for each input feature
map fk.

pling network. Next, it is down-sampled by a constrained
deformable pooling adjusted from [3]. In our implemen-
tation, the predicted offsets are obtained by △pij = λ ·
△p̂ij ◦ (Wk, Hk), where λ = Sigmoid(Avg(fij)) is a
learnable scaling parameter to modulate the predicted off-
set and fij is the feature vector at (i, j). The other symbol
definitions are consistent with the original ROI deformable
pooling [3]. Then, a convolution layer with a 1 × 1 kernel
size and a Sigmoid function are employed to generate confi-
dence score maps to distinguish representative text regions.
After that, we select the features with top-Nk scores in each
scale layer k, and gather them into a sequence form with a
shape (

∑
k Nk, C), where C = 256 is the channel number.

In our feature grouping network, the sampled features
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Figure 3. The bad cases of “text overlapping” in our method. The
red bounding boxes denote the wrong predictions, and the green
ones are the right predictions.

are first concatenated with position embeddings. Then,
we adopt four basic transformer encoder layers as those in
DETR [2] to model the feature relationship, and implicitly
aggregate the features from the same text instance. Finally,
scores and coordinates of rotated bounding boxes are ob-
tained via a text/non-text classification head and a bounding
box prediction head, which are composed of full-connected
layers and Sigmoid functions.

1.2. Scale-Invariant GWD Loss

To regress the coordinates of rotated bounding boxes, we
adapt the Gaussian Wasserstein Distance (GWD) loss [20]
into a scale-invariant form to better balance the loss weights
of text with different scales. Following the GWD loss, we
first convert the rotated bounding box B(x, y, h, w, θ) into a
2-D Gaussian distribution representation N (m,Σ), where
m = (x, y) and Σ is formulated as

Σ =

(
w
2 cos2 θ + h

2 sin2 θ w−h
2 cos θ sin θ

w−h
2 cos θ sin θ w

2 sin2 θ + h
2 cos2 θ

)2

.

(1)
Then, we use the Wasserstein distance between two in-
stances to formulate d2 as

d2 =∥ m1−m2 ∥22 +Tr
(
Σ1 +Σ2 − 2(Σ

1/2
1 Σ2Σ

1/2
1 )1/2

)
.

(2)
Due to the extreme variance of scales, the loss of

small text has a negligible influence on the gradient back-
propagation compared with the loss of large text. Hence, we

Figure 4. The visualization of feature sampling and grouping. We
visualize the attention weights for one text instance’s features in
the last transformer layer. The weight value increases from 0 to 1
as the color changes from blue to red. The output feature for the
text instance in a red bounding box is mainly aggregated from the
inner text point features.

adjust the GWD loss into a scale-invariant form as follows:

L̂rbox =
1

Nr

∑
x

(1− 1

τ + f(d2( ûx

|t̂x|
, t̂x
|t̂x|

))
), (3)

where ûx denotes the predicted rotated bounding box, t̂x
denotes the target one, and |t̂x| denotes its area. Nr is the
number of bounding boxes after pair-wise matching. The
elements with ̂ denote the matched bounding boxes or
the target ones after pair-wise matching. f(·) represents a
non-linear function, and τ is a hyper-parameter to modulate
the loss. According to the GWD loss [20], we set f(d2) =
log (d2 + 1) and τ = 3. By normalizing ûx and t̂x with the
area of t̂x, we can decrease the negative effect of the scale
imbalance.

1.3. Training

In the training period, the data argumentation for train-
ing data includes: (1) Random Rotation, flipping, and per-
spective transformation; (2) Color argumentation; (3) Ran-
dom cropping. In addition, both sides of the training images
are randomly resized in the range between 640 × 640 and
1680 × 1680 with an interval of 64. In our loss function,
we use λc, λd, and λf to adjust the influences of different
losses. Specifically, we set λc to 0.5 and λd to 1. For λf ,
we initialize it to 1e−2, and decay it by a factor 0.1 at the
35th and 45th epoch, respectively.



Figure 5. The qualitative results of our proposed method in different cases, including multi-oriented text, long text, multi-lingual text,
low-resolution text, curved text, dense text. For curved text detection, the Bezier curves’ control points are drawn in red.

Method
Sampling F-measure
Number IC15 TD500 MTWI

FPN+FC 64+128+256 85.7 85.5 70.6
FPN+GCN 64+128+256 87.9 87.0 72.5

Ours (RBox) 64+128+256 89.1 88.1 75.2

Table 1. The ablation study on feature grouping with non-
transformer structures.

Methods
IC15 MLT17 val

P R F P R F
Average Pooling 89.5 87.2 88.3 86.6 72.6 79.0

Deformable Pooling 89.9 87.3 88.6 86.8 72.8 79.2
Ours (RBox) 90.9 87.3 89.1 86.8 73.4 79.5

Table 2. The abalation study on the constrained deformable pool-
ing. “P”, “R”, and “F” represent Precision, Recall, and F- measure,
respectively.

L̂rbox
IC15 MLT17 val

P R F P R F
GWD 90.2 86.6 88.4 86.7 72.6 79.0

Ours (RBox) 90.9 87.3 89.1 86.8 73.4 79.5

Table 3. The ablation study on the loss for rotated bounding boxes.

Transformer Layer
IC15 MLT17 val

P R F P R F
Basic Layer 90.8 87.3 89.1 86.8 73.4 79.5

Swin Transformer Layer 90.9 88.1 89.5 87.2 73.4 79.7

Table 4. The experiment on the transformer layers in our feature
grouping network.

1.4. Inference

In the inference period, we keep the aspect ratio of test
images and resize the shorter sides to 768 (for TD500 and
MTWI) or 1024 (for others), while the upper limit of the
longer sides is 2048. Moreover, we can easily obtain the
detection results without any complex post-processing. By
setting a proper threshold, we only keep the predicted boxes
with scores higher than the threshold. Specifically, we set it
to 0.45 for the IC15 dataset, and 0.5 for other datasets.

2. Experiments

2.1. Qualitative Results

As shown in Fig. 5, we provide more qualitative results
for visualization, including multi-oriented text, long text,
multi-lingual text, small text, dense text, and curved text.
Moreover, we also provide some bad cases of our method
shown in Fig. 3. The red bounding boxes are the wrong
predictions. It is hard for our method to deal with the case of
“text overlapping”, because the features of the overlapping
text instances are quite complex and tangled. Our feature
grouping module sometime fails in these cases.

As shown in Fig. 4, we show the feature grouping results
of the predicted rotated bounding boxes in red. We visualize
the attention weights for one text instance’s features in the
last transformer layer. The weight value increases from 0 to
1 as the color changes from blue to red. It means that the
output features for text instances in red bounding boxes are
mainly aggregated from the inner text point features (red
ones).
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ICN [1] R-101
√

81.40 74.30 47.70 70.30 64.90 67.80 70.00 90.80 79.10 78.20 53.60 62.90 67.00 64.20 50.20 68.20
RoI-Trans. [4] R-101

√
88.64 78.52 43.44 75.92 68.81 73.68 83.59 90.74 77.27 81.46 58.39 53.54 62.83 58.93 47.67 69.56

SCRDet [22] R-101
√

89.98 80.65 52.09 68.36 68.36 60.32 72.41 90.85 87.94 86.86 65.02 66.68 66.25 68.24 65.21 72.61
Gliding Vertex [17] R-101 89.64 85.00 52.26 77.34 73.01 73.14 86.82 90.74 79.02 86.81 59.55 70.91 72.94 70.86 57.32 75.02
CenterMap OBB [14] R-101

√
89.83 84.41 54.60 70.25 77.66 78.32 87.19 90.66 84.89 85.27 56.46 69.23 74.13 71.56 66.06 76.03

FPN-CSL [19] R-152
√

90.25 85.53 54.64 75.31 70.44 73.51 77.62 90.84 86.15 86.69 69.60 68.04 73.83 71.10 68.93 76.17
RSDet-II [13] R-152

√
89.93 84.45 53.77 74.35 71.52 78.31 78.12 91.14 87.35 86.93 65.64 65.17 75.35 79.74 63.31 76.34

Oriented R-CNN [16]

R-50 89.46 82.12 54.78 70.86 78.93 83.00 88.20 90.90 87.50 84.68 63.97 67.69 74.94 68.84 52.28 75.87
R-101 88.86 83.48 55.27 76.92 74.27 82.10 87.52 90.90 85.56 85.33 65.51 66.82 74.36 70.15 57.28 76.28
R-50

√
89.84 85.43 61.09 79.82 79.71 85.35 88.82 90.88 86.68 87.73 72.21 70.80 82.42 78.18 74.11 80.87

R-101
√

90.26 84.74 62.01 80.42 79.04 85.07 88.52 90.85 87.24 87.96 72.26 70.03 82.93 78.46 68.05 80.52
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CFC-Net [11] R-101
√

89.08 80.41 52.41 70.02 76.28 78.11 87.21 90.89 84.47 85.64 60.51 61.52 67.82 68.02 50.09 73.50
DCL [18] R-152

√
89.26 83.60 53.54 72.76 79.04 82.56 87.31 90.67 86.59 86.98 67.49 66.88 73.29 70.56 69.99 77.37

RIDet [12] R-50
√

89.31 80.77 54.07 76.38 79.81 81.99 89.13 90.72 83.58 87.22 64.42 67.56 78.08 79.17 62.07 77.62
S2A-Net [5] R-101

√
89.28 84.11 56.95 79.21 80.18 82.93 89.21 90.86 84.66 87.61 71.66 68.23 78.58 78.20 65.55 79.15

R3Det-GWD [21] R-152
√

89.66 84.99 59.26 82.19 78.97 84.83 87.70 90.21 86.54 86.85 73.04 67.56 76.92 79.22 74.92 80.19

R3Det-KLD [23] R-50
√

89.90 84.91 59.21 78.74 78.82 83.95 87.41 89.89 86.63 86.69 70.47 70.87 76.96 79.40 78.62 80.17
R-152

√
89.92 85.13 59.19 81.33 78.82 84.38 87.50 89.80 87.33 87.00 72.57 71.35 77.12 79.34 78.68 80.63
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PolarDet [25] R-101
√

89.65 87.07 48.14 70.97 78.53 80.34 87.45 90.76 85.63 86.87 61.64 70.32 71.92 73.09 67.15 76.64
RDD [26] R-101

√
89.15 83.92 52.51 73.06 77.81 79.00 87.08 90.62 86.72 87.15 63.96 70.29 76.98 75.79 72.15 77.75

GWD [20] R-152
√

89.06 84.32 55.33 77.53 76.95 70.28 83.95 89.75 84.51 86.06 73.47 67.77 72.60 75.76 74.17 77.43

KLD [24] R-50 88.91 83.71 50.10 68.75 78.20 76.05 84.58 89.41 86.15 85.28 63.15 60.90 75.06 71.51 67.45 75.28
R-50

√
88.91 85.23 53.64 81.23 78.20 76.99 84.58 89.50 86.84 86.38 71.69 68.06 75.95 72.23 75.42 78.32

Ours (RBox) R-50 90.36 85.31 56.39 76.45 74.55 83.46 87.78 90.86 85.85 85.28 64.52 67.82 77.72 74.32 67.80 77.90
R-50

√
89.81 85.19 61.35 76.18 79.29 84.81 88.26 90.86 87.55 87.42 66.89 70.10 78.40 79.28 68.48 79.59

Table 5. Detection results on the DOTA-v1.0 testing set. R-50, R-101, and R-152 denote ResNet-50, ResNet-101, and ResNet-152,
respectively. MS indicates that multi-scale testing is used. Red and blue indicate the top two performances.

Figure 6. The qualitative results on DOTA-v1.0 testing set. It contains 15 common categories, such as large-vehicle, small-vehicle, plane,
swimming-pool, ship, tennis-court, etc.



2.2. Constrained Deformable Pooling

To demonstrate the effectiveness of our constrained de-
formable pooling, we construct an ablation study on the
IC15 and the MLT17 datasets. As shown in Tab. 2, our
constrained deformable pooling outperforms average pool-
ing and the original deformable pooling. It achieves 89.1%
and 79.5% f-measure on the IC15 and the MLT17 datasets,
respectively.

2.3. Loss for Rotated Bounding Boxes

As shown in Tab. 3, we compare the original GWD [20]
loss with our proposed scale-invariant form on the IC15 and
the MLT17 datasets. Our scale-invariant GWD loss outper-
forms the original one by 0.7% and 0.5% on the IC15 and
the MLT17 datasets.

2.4. Transformer Structure

Despite the state-of-the-art performance achieved by our
basic model architecture, we replace the basic transformer
encoder layers with those in the modern transformer struc-
ture, i.e. Swin-Transformer [10], for further improve-
ment. Different from applying Swin-Transformer for im-
ages, we only use four swin-transformer blocks for our fea-
ture grouping. Since it is designed for 2-D feature maps, we
feed the feature map into the swin-transformer stage while
masking out the unsampled features. The computation cost
would increase to some extent, so we just provide the re-
sults in the appendix for reference. Owing to the power of
Swin-Transformer layers, our model obtains 0.4% and 0.2%
performance gain on the IC15 and the MLT17 datasets as
shown in Tab. 4.

2.5. Compared with Non-Transformer Structure

To evaluate sampling and grouping with non-transformer
methods, we replace our transformer module with GCN [7]
(FPN+GCN) and FC layers (FPN+FC). As shown in Tab. 1,
these two settings achieve lower f-measure than ours. This
phenomenon validates the effectiveness of our proposed
sampling and grouping framework based on transformers.

2.6. Rotated Object Detection

Our proposed method not only achieves state-of-the-art
performance on scene text detection, but also performs well
on oriented object detection. To prove the effectiveness of
our method, we adapt it to oriented object detection and
evaluate it on a popular dataset for oriented object detection
in aerial images, i.e., DOTA-v1.0 [15]. DOTA-v1.0 is one
of the largest dataset for oriented object detection in aerial
images, and it contains 15 common categories, 2806 images
and 188282 instances.

In the training, we use the same loss function as the
loss for multi-oriented text detection. The feature sampling

scheme is consistent with the configuration #5. Following
the pre-processing in previous methods [20, 24], we split
the training images of DOTA-v1.0 into 1024 × 1024 sub-
images with an overlap of 200 pixels. We train our model
for 100 epochs with an initial learning rate 1e−4, and decay
it at 50th and 80th epoch, respectively.

As shown in Tab. 5, we compare our model with pre-
vious oriented object detection approaches in both single-
scale and multi-scale testing manners. For a fair compari-
son, our method achieves the best performance among the
single-stage approaches, and outperform KLD [24] by 1.32
AP50. By multi-scale testing, our model also achieves the
competitive result 79.59 in terms of AP50 with refine-stage
and two-stage approaches.
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