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Abstract
This supplementary material consists of four parts. In

Section 1 we introduce the proof of the alignment of key-
points detected by our proposed unsupervised multi-scale
keypoint detector. Then we introduce the implementation
details in Section 2. Later, we show the detailed quantita-
tive comparison results on ShapeNet55 dataset using three
widely-used metrics and more qualitative results on PCN
dataset in Section 3. At last, in Section 4, we discuss the
limitation of our method on extreme cases. For more de-
tails, we provide source code for closer inspection.

1. Proof of Aligned Keypoints Detected by Un-
supervised Multi-scale Keypoint Detector

As mentioned in the main text, the keypoints extracted
by our proposed unsupervised multi-scale keypoint detector
(UMKD) D (shown in Figure 1) follow a theory that:
Theorem 1. The coordinates of detected keypoints P are
irrelevant to the order of original points X. That is: P =
D(X) = D(R(X)), where R(·) denotes random permutation
operation.

Proof. Let X ∈ RN×3 denote the sampled input point
clouds. N is the number of points. The PointNet++ [4]
based encoder captures point-wise features H ∈ RN×D

where D denotes the feature dimension. Denote X =
{xT

1 , xT2 , · · · , xT
N} and H = {hT

1 , h
T
2 , · · · , hT

N}, where
xi ∈ R3×1 and hi ∈ RD×1 are the coordinates and fea-
ture of the i-th point. Since the weights of the encoder are
shared among all points, denote the weights of the shared
encoder as Ω ∈ R3×D, the point feature hi = ΩT · xi. We
apply a Linear-based block at the last of the keypoints de-
tector, and denote its weights as: Φ ∈ RD×K , where K is
the number of keypoints. The predicted convex combina-
tion weights are calculated as W = H · Φ. We then predict
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keypoints P as the convex combination of the input points:

P = WT X = (H · Φ)T X = ΦT ·HT · X

= ΦT (h1xT1 + h2xT
2 + · · ·+ hNxT

N )

= ΦT (ΩT x1xT1 +ΩT x2xT2 + · · ·+ΩT xNxTN )

= ΦTΩT
N∑
i=1

xixTi .

(1)

According to Equation 1, the coordinates of predict key-
points P are irrelevant to the order of original points X.
That is to say, objects with similar shapes or topology have
almost the same ordered keypoints. Therefore, our pro-
posed UMKD can capture aligned keypoints within a sub-
category.

2. Implementation Details
Our proposed method LAKe-Net is implemented with

PyTorch on AMD Ryzen 3700X with 2 NVIDIA GTX 3090
GPUs. We utilize Adam optimization to train the whole ar-
chitecture and the betas are set as 0.9 and 0.999. The learn-
ing rate is initialized as 0.001. For point cloud reconstruc-
tion, we set the batch size to 64 and train the model for 60
epochs with the continuous learning rate decay of 0.7 for
every 20 epochs. And for point cloud completion, we re-
sume the learning rate and train the model for 100 epochs
with the continuous learning rate decay of 0.7 for every 20
epochs.

The architecture of our proposed LAKe-Net consists
of four parts: auto-encoder, asymmetric keypoint locator,
surface-skeleton generation and shape refinement subnet.
We input 2,048 points and output 16,384 and 8,192 points
for PCN dataset and ShapeNet dataset, respectively.

The auto-encoder consists of a pointnet-based [3]
PCN [11] encoder and a coarse generator. The dimension
of the global feature embedding is 1024. We implement
the ConvTranspose layer (shown in Figure 2 in main pa-
per) using a special one-dimensional deconvolutional strat-
egy proposed in [6], i.e. the point-wise splitting operation,
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Figure 1. The architecture of our proposed unsupervised multi-scale keypoints detector UMKD. We show the detailed calculation of P3

which is boxed in blue. Ω and Φ denote the weights of PointNet++ and linear block (boxed in grey and dotted box), respectively.
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Figure 2. Illustration of failure case and completed results by dif-
ferent point cloud completion methods.

Figure 3. More results of original geometry and corresponding
surface-skeletons pairs.

to generate multiple child point features for each global fea-
ture. The number of coarse output Xc and Xc is 1024.

As for the detailed architecture of the refinement sub-
net, we propose three recursive skeleton-assisted refinement
(RSR) modules which is shown in Figure 2 of the main text.
The dimensions of fi in multi-step are set as [1024, 512,
256, 128]. For each step, we integrate multi-scale surface-
skeletons where the numbers of skeleton points are 1024,
2048, 4096. And the up-factors of RSR modules ui are
[1,1,2] for PCN dataset and [1,1,1] for ShapeNet55 dataset.

3. Detailed Experimental Results

We report the detailed results for FoldingNet [9],
PCN [11], GRNet [8], PoinTr [10] and our proposed LAKe-
Net on ShapeNet55 dataset in Table 2. Each row in the table
stands for a category of objects. We list numbers of samples
in each category using three widely-used metrics: CD-l1,
CD-l2 and EMD. We also test the inference time per sam-
ple of various methods. The results are shown in Table 1,
which shows that our method is comparable with most of
other methods.

Besides, we present more qualitative comparison results
of point cloud completion on PCN dataset. Figure 4 shows
the extra visualization results of our method and other meth-
ods on PCN dataset. Experimental results show that our
method has the best performance on completing the miss-
ing topology and geometric information.

We also provide more results of original geometry and
surface-skeletons pairs, generated by 128 keypoints of ob-
jects with different topologies (chairs with and without arm)
in Figure 3. It shows that our proposed surface skeleton can
reconstruct different topological structures. We can flexibly
control the fineness of skeletons by adjusting the number of
keypoints.
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Figure 4. Illustration of point cloud completion comparison with previous methods on different categories of PCN dataset. From top to
bottom are the partial input, completed results from GRNet [8], SpareNet [7], PMP-Net [5], PoinTr [10], Snowflake-Net [6], our method
and the last row is the ground truth.

Methods Times(ms)

Folding [9] 1.79
PCN [11] 6.54

AtlasNet [1] 11.1
MSN [2] 63.7

GRNet [8] 23.4
PMP-Net [5] 18.4
SpareNet [7] 1030
PoinTr [10] 18.0

Snowflake [6] 30.4
Ours 34.5

Table 1. Comparison results with other methods on inference time
per sample.

4. Limitations
We discuss the limitation of our proposed LAKe-Net on

some extreme cases. We show a sampled failure case of
point cloud completion in Figure 2. When the partial input
misses most of geometric and topological information, all
methods including ours may fail to recover the original local

geometric details. According to the qualitative comparison
results in Figure 2, our method can generate more plausible
and clear structure compared with other methods.
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Samples CD-l1(×103) ↓ CD-l2(×103) ↓ EMD(×103) ↓

Folding PCN GRNet PoinTr Ours Folding PCN GRNet PoinTr Ours Folding PCN GRNet PoinTr Ours

airplane 6472 21.294 14.301 15.795 10.893 9.996 1.391 0.643 2.626 0.658 0.463 55.318 24.909 28.661 21.269 23.990
bag 136 25.502 21.836 16.501 16.667 14.643 2.141 1.535 0.862 1.400 1.359 62.715 34.343 27.208 29.452 37.897

basket 184 27.857 23.641 20.518 18.798 18.674 2.208 1.557 1.188 1.637 0.954 63.666 35.671 33.641 31.971 34.864
bathtub 1376 27.212 21.900 19.032 17.297 16.114 2.208 1.425 1.133 1.565 1.129 67.201 33.514 31.577 30.767 34.219

bed 376 32.311 27.647 17.526 19.951 15.894 3.171 2.495 0.934 2.180 0.717 73.551 49.438 29.706 37.562 28.360
bench 2904 20.803 17.205 15.186 12.221 12.120 1.453 0.956 0.863 0.935 0.707 50.075 28.857 25.850 21.445 18.160

birdhouse 120 32.276 29.176 19.498 23.980 18.250 3.095 2.443 1.069 2.917 1.239 81.111 46.768 31.373 43.747 34.811
bookshelf 728 28.352 26.917 17.746 19.419 16.212 2.483 2.388 0.928 1.862 0.891 64.409 44.744 29.595 37.062 29.714

bottle 800 21.701 16.893 15.686 15.852 13.393 1.431 0.859 0.826 1.371 1.010 53.550 24.915 25.606 28.306 33.461
bowl 304 30.318 23.288 22.952 18.265 19.305 2.637 1.427 1.557 1.331 0.803 64.767 33.013 36.404 30.976 31.233
bus 1504 24.890 17.820 16.037 13.009 14.015 1.716 0.894 0.838 0.745 1.060 62.856 31.193 26.847 25.096 35.784

cabinet 2520 23.800 21.179 18.915 16.039 17.328 1.594 1.236 1.011 1.102 1.015 59.865 34.189 31.184 28.239 33.237
camera 184 36.762 30.297 18.459 27.252 17.059 4.233 2.792 1.012 4.118 1.134 83.065 49.564 30.534 51.290 36.959

can 176 24.991 21.527 20.286 19.443 18.715 1.761 1.303 1.151 2.134 0.633 60.234 30.878 32.272 31.228 29.032
cap 96 33.213 19.539 18.662 17.445 15.275 3.279 1.009 1.277 1.290 0.971 74.738 30.302 29.678 31.702 32.842
car 5624 26.678 21.451 19.090 17.358 17.387 1.929 1.222 1.054 1.189 1.069 65.968 36.668 31.020 32.398 34.389

cellphone 1336 16.567 14.398 15.884 11.293 12.711 0.728 0.549 0.891 0.556 0.594 42.215 24.520 26.273 21.418 35.284
chair 10848 24.096 20.094 15.862 0.416 13.977 1.816 1.209 0.800 1.324 1.014 60.203 33.513 26.685 31.580 34.133
clock 1048 25.727 21.942 17.877 17.081 15.863 1.996 1.484 0.976 1.537 1.005 57.494 35.244 29.268 31.153 30.092

keyboard 104 17.760 14.226 14.835 9.821 11.847 0.878 0.584 0.755 0.444 0.934 44.448 22.136 24.017 16.820 31.681
dishwasher 152 23.315 20.718 19.294 17.466 18.092 1.483 1.168 1.024 1.422 0.210 50.122 30.906 31.479 29.311 16.392

display 1752 22.821 19.745 16.270 15.079 14.229 1.559 1.135 0.798 1.218 1.250 51.455 32.232 26.770 26.356 35.903
earphone 120 34.411 26.904 16.521 25.901 14.340 4.012 2.326 1.018 4.547 1.191 76.522 48.377 27.574 49.357 32.760

faucet 1192 29.935 23.018 14.203 21.963 10.721 3.186 1.955 1.569 1.754 0.338 66.154 40.282 24.903 42.439 20.544
file cabinet 480 25.942 22.775 18.778 18.112 17.541 1.942 1.492 1.005 3.227 0.965 65.258 37.221 30.949 42.723 27.470

guitar 1280 12.090 8.996 12.144 7.947 6.777 0.437 0.239 1.426 0.385 0.699 26.276 18.313 22.347 18.514 29.145
helmet 264 34.702 29.376 21.077 27.375 19.186 3.783 2.578 1.276 4.291 1.198 77.935 45.700 33.110 45.843 37.541

jar 960 31.069 24.743 19.996 22.614 17.999 3.049 1.858 1.192 2.684 1.112 71.250 37.405 31.485 39.210 33.153
knife 680 13.033 10.277 12.828 9.360 6.553 0.543 0.339 2.885 0.544 1.213 31.929 18.662 23.922 20.264 36.936
lamp 3712 27.753 23.019 15.000 20.443 10.766 2.804 2.188 2.445 3.381 1.282 60.129 41.450 26.144 36.941 37.052
laptop 736 18.469 14.384 15.556 11.529 13.178 0.855 0.506 0.790 1.551 1.435 40.658 21.525 24.916 19.728 40.856

loudspeaker 2560 28.254 24.627 19.158 20.241 17.635 2.411 1.833 1.070 2.079 1.148 67.650 39.619 31.280 36.650 35.478
mailbox 152 22.713 17.961 13.536 18.510 10.800 1.640 0.990 0.848 2.250 0.661 54.655 29.430 23.312 35.135 27.312

microphone 112 23.040 20.631 14.018 21.982 9.258 1.974 1.731 2.798 3.985 1.524 50.595 33.966 25.097 41.002 41.198
microwaves 248 26.206 22.422 19.855 18.005 18.308 1.956 1.381 1.087 1.591 1.306 63.709 36.277 32.883 39.564 37.046
motorbike 544 29.535 22.890 16.233 19.519 14.931 2.608 1.542 0.827 1.753 0.337 68.983 40.384 27.609 40.384 20.469

mug 344 32.684 25.790 22.169 21.857 20.417 3.056 1.805 1.301 2.184 0.307 72.250 37.005 34.851 37.001 19.663
piano 384 29.993 24.023 17.658 19.002 15.754 2.845 1.767 0.927 2.169 0.376 69.687 40.847 29.207 34.482 21.198
pillow 160 24.430 20.216 18.165 17.811 15.782 1.640 1.086 1.055 1.404 0.973 63.224 31.447 28.795 31.769 29.848
pistol 496 20.901 15.997 12.408 14.506 10.375 1.275 0.750 0.653 1.189 1.069 54.767 32.784 21.855 30.082 36.188

flowerpot 968 36.622 28.910 20.387 22.951 18.600 4.106 2.576 1.239 2.677 1.194 82.931 48.663 33.464 42.715 35.906
printer 272 32.040 27.407 17.810 20.495 16.462 3.012 2.238 0.921 2.235 0.858 75.801 44.694 29.497 39.077 30.358
remote 112 18.344 15.208 14.662 12.160 11.854 0.875 0.617 0.756 0.675 0.601 43.824 23.872 24.275 21.395 28.322

rifle 3800 17.733 11.867 12.175 10.491 7.498 1.021 0.462 2.487 0.729 0.925 41.483 24.095 22.826 24.463 32.302
rocket 136 20.458 12.680 10.702 11.864 7.636 1.317 0.511 0.912 0.918 0.688 47.203 22.858 19.205 22.491 28.999

skateboard 248 21.164 14.556 13.753 10.626 10.483 1.384 0.622 0.875 0.593 0.665 56.167 24.293 23.936 19.771 27.137
sofa 5080 25.277 21.194 17.793 15.228 15.937 1.750 1.213 0.928 1.084 1.277 64.620 36.472 30.066 28.314 43.099
stove 352 26.358 22.565 18.159 17.806 16.740 2.038 1.445 0.964 1.618 0.824 64.162 36.998 29.846 30.074 26.681
table 13496 23.052 19.185 16.451 0.483 13.752 1.786 1.181 0.898 1.395 0.564 55.483 31.098 27.082 31.238 22.177

telephone 1744 16.080 14.176 15.824 11.040 12.614 0.690 0.544 0.872 0.553 0.478 39.098 23.954 26.184 20.767 20.838
tower 216 24.196 20.261 15.182 17.883 13.302 1.831 1.344 0.874 1.731 0.595 59.455 33.713 25.310 31.909 21.915
train 624 25.545 18.670 14.791 14.305 12.824 1.895 1.055 0.759 1.083 0.517 60.620 33.822 25.058 26.239 21.500

trash bin 552 28.235 24.318 21.501 21.316 20.074 2.283 1.624 1.248 1.107 1.209 65.054 36.620 34.132 34.752 37.648
watercraft 3104 23.740 17.670 12.740 13.562 10.818 1.711 1.001 0.689 1.012 0.397 58.678 32.644 22.239 24.141 18.701

washer 272 27.989 24.620 20.579 20.915 19.277 2.391 1.754 1.164 2.250 1.033 59.057 38.436 33.572 37.290 30.029

Average 25.459 20.674 16.977 16.597 14.532 2.060 1.361 1.151 1.701 0.893 60.169 34.008 28.200 31.724 30.943

Table 2. Detailed comparison results with other methods of point cloud completion on ShapeNet55 dataset. We list numbers of samples in
each category in test set and calculate three metrics: CD with L1 norm (CD-l1, lower is better) multiplied by 103, L2 norm (CD-l2, lower
is better) multiplied by 103 and EMD multiplied by 103. Note that the metrics are computed by 8,192 points.
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