Supplementary Material of "LAKe-Net: Topology-Aware Point Cloud Completion by Localizing Aligned Keypoints"

Junshu Tang¹, Zhijun Gong¹, Ran Yi¹, Yuan Xie², Lizhuang Ma^{1,2*} ¹Shanghai Jiao Tong University, ²East China Normal University

{tangjs, gongzhijun, ranyi}@sjtu.edu.cn, yxie@cs.ecnu.edu.cn, ma-lz@cs.sjtu.edu.cn

Abstract

This supplementary material consists of four parts. In Section 1 we introduce the proof of the alignment of keypoints detected by our proposed unsupervised multi-scale keypoint detector. Then we introduce the implementation details in Section 2. Later, we show the detailed quantitative comparison results on ShapeNet55 dataset using three widely-used metrics and more qualitative results on PCN dataset in Section 3. At last, in Section 4, we discuss the limitation of our method on extreme cases. For more details, we provide source code for closer inspection.

1. Proof of Aligned Keypoints Detected by Unsupervised Multi-scale Keypoint Detector

As mentioned in the main text, the keypoints extracted by our proposed unsupervised multi-scale keypoint detector (UMKD) D (shown in Figure 1) follow a theory that:

Theorem 1. The coordinates of detected keypoints P are irrelevant to the order of original points X. That is: $P = D(X) = D(\mathcal{R}(X))$, where $\mathcal{R}(\cdot)$ denotes random permutation operation.

Proof. Let $\mathbf{X} \in \mathbb{R}^{N \times 3}$ denote the sampled input point clouds. N is the number of points. The PointNet++ [4] based encoder captures point-wise features $H \in \mathbb{R}^{N \times D}$ where D denotes the feature dimension. Denote $\mathbf{X} = \{\mathbf{x}_1^T, \mathbf{x}_2^T, \cdots, \mathbf{x}_N^T\}$ and $H = \{h_1^T, h_2^T, \cdots, h_N^T\}$, where $\mathbf{x}_i \in \mathbb{R}^{3 \times 1}$ and $h_i \in \mathbb{R}^{D \times 1}$ are the coordinates and feature of the *i*-th point. Since the weights of the encoder are shared among all points, denote the weights of the shared encoder as $\Omega \in \mathbb{R}^{3 \times D}$, the point feature $h_i = \Omega^T \cdot \mathbf{x}_i$. We apply a Linear-based block at the last of the keypoints detector, and denote its weights as: $\Phi \in \mathbb{R}^{D \times K}$, where K is the number of keypoints. The predicted convex combination weights are calculated as $\mathbf{W} = H \cdot \Phi$. We then predict

keypoints **P** as the convex combination of the input points:

$$\mathbf{P} = \mathbf{W}^T \mathbf{X} = (H \cdot \Phi)^T \mathbf{X} = \Phi^T \cdot H^T \cdot \mathbf{X}$$

= $\Phi^T (h_1 \mathbf{x}_1^T + h_2 \mathbf{x}_2^T + \dots + h_N \mathbf{x}_N^T)$
= $\Phi^T (\Omega^T \mathbf{x}_1 \mathbf{x}_1^T + \Omega^T \mathbf{x}_2 \mathbf{x}_2^T + \dots + \Omega^T \mathbf{x}_N \mathbf{x}_N^T)$ (1)
= $\Phi^T \Omega^T \sum_{i=1}^N \mathbf{x}_i \mathbf{x}_i^T$.

According to Equation 1, the coordinates of predict keypoints \mathbf{P} are irrelevant to the order of original points \mathbf{X} . That is to say, objects with similar shapes or topology have almost the same ordered keypoints. Therefore, our proposed UMKD can capture aligned keypoints within a subcategory.

2. Implementation Details

Our proposed method LAKe-Net is implemented with PyTorch on AMD Ryzen 3700X with 2 NVIDIA GTX 3090 GPUs. We utilize Adam optimization to train the whole architecture and the betas are set as 0.9 and 0.999. The learning rate is initialized as 0.001. For point cloud reconstruction, we set the batch size to 64 and train the model for 60 epochs with the continuous learning rate decay of 0.7 for every 20 epochs. And for point cloud completion, we resume the learning rate and train the model for 100 epochs with the continuous learning rate decay of 0.7 for every 20 epochs.

The architecture of our proposed LAKe-Net consists of four parts: auto-encoder, asymmetric keypoint locator, surface-skeleton generation and shape refinement subnet. We input 2,048 points and output 16,384 and 8,192 points for PCN dataset and ShapeNet dataset, respectively.

The auto-encoder consists of a pointnet-based [3] PCN [11] encoder and a coarse generator. The dimension of the global feature embedding is 1024. We implement the *ConvTranspose* layer (shown in Figure 2 in main paper) using a special one-dimensional deconvolutional strategy proposed in [6], i.e. the point-wise splitting operation,

^{*}Corresponding authors.

Figure 1. The architecture of our proposed unsupervised multi-scale keypoints detector UMKD. We show the detailed calculation of P_3 which is boxed in blue. Ω and Φ denote the weights of PointNet++ and linear block (boxed in grey and dotted box), respectively.

Figure 2. Illustration of failure case and completed results by different point cloud completion methods.

Figure 3. More results of original geometry and corresponding surface-skeletons pairs.

to generate multiple child point features for each global feature. The number of coarse output \mathbf{X}_c and \mathcal{X}_c is 1024.

As for the detailed architecture of the refinement subnet, we propose three recursive skeleton-assisted refinement (RSR) modules which is shown in Figure 2 of the main text. The dimensions of f_i in multi-step are set as [1024, 512, 256, 128]. For each step, we integrate multi-scale surfaceskeletons where the numbers of skeleton points are 1024, 2048, 4096. And the up-factors of RSR modules u_i are [1,1,2] for PCN dataset and [1,1,1] for ShapeNet55 dataset.

3. Detailed Experimental Results

We report the detailed results for FoldingNet [9], PCN [11], GRNet [8], PoinTr [10] and our proposed LAKe-Net on ShapeNet55 dataset in Table 2. Each row in the table stands for a category of objects. We list numbers of samples in each category using three widely-used metrics: $CD-l_1$, $CD-l_2$ and EMD. We also test the inference time per sample of various methods. The results are shown in Table 1, which shows that our method is comparable with most of other methods.

Besides, we present more qualitative comparison results of point cloud completion on PCN dataset. Figure 4 shows the extra visualization results of our method and other methods on PCN dataset. Experimental results show that our method has the best performance on completing the missing topology and geometric information.

We also provide more results of original geometry and surface-skeletons pairs, generated by 128 keypoints of objects with different topologies (chairs with and without arm) in Figure 3. It shows that our proposed surface skeleton can reconstruct different topological structures. We can flexibly control the fineness of skeletons by adjusting the number of keypoints.

Figure 4. Illustration of point cloud completion comparison with previous methods on different categories of PCN dataset. From top to bottom are the partial input, completed results from GRNet [8], SpareNet [7], PMP-Net [5], PoinTr [10], Snowflake-Net [6], our method and the last row is the ground truth.

Times(ms)
1.79
6.54
11.1
63.7
23.4
18.4
1030
18.0
30.4
34.5

Table 1. Comparison results with other methods on inference time per sample.

4. Limitations

We discuss the limitation of our proposed LAKe-Net on some extreme cases. We show a sampled failure case of point cloud completion in Figure 2. When the partial input misses most of geometric and topological information, all methods including ours may fail to recover the original local geometric details. According to the qualitative comparison results in Figure 2, our method can generate more plausible and clear structure compared with other methods.

References

- T. Groueix, M. Fisher, V. G. Kim, B. C. Russell, and M. Aubry. A papier-mâché approach to learning 3d surface generation. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pages 216–224, 2018.
 3
- M. Liu, L. Sheng, S. Yang, J. Shao, and S.-M. Hu. Morphing and sampling network for dense point cloud completion. In *Proceedings of the AAAI conference on artificial intelligence*, volume 34, pages 11596–11603, 2020. 3
- [3] C. R. Qi, H. Su, K. Mo, and L. J. Guibas. Pointnet: Deep learning on point sets for 3d classification and segmentation. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pages 652–660, 2017. 1
- [4] C. R. Qi, L. Yi, H. Su, and L. J. Guibas. Pointnet++: Deep hierarchical feature learning on point sets in a metric space. arXiv preprint arXiv:1706.02413, 2017. 1
- [5] X. Wen, P. Xiang, Z. Han, Y.-P. Cao, P. Wan, W. Zheng, and Y.-S. Liu. Pmp-net: Point cloud completion by learn-

	Samples CD- $l_1(\times 10^3) \downarrow$						CD- $l_2(\times 10^3) \downarrow$					EMD(×10 ³) \downarrow				
		Folding	PCN	GRNet	PoinTr	Ours	Folding	PCN	GRNet	PoinTr	Ours	Folding	PCN	GRNet	PoinTr	Ours
airplane	6472	21.294	14.301	15.795	10.893	9.996	1.391	0.643	2.626	0.658	0.463	55.318	24.909	28.661	21.269	23.990
bag	136	25.502	21.836	16.501	16.667	14.643	2.141	1.535	0.862	1.400	1.359	62.715	34.343	27.208	29.452	37.897
basket	184	27.857	23.641	20.518	18.798	18.674	2.208	1.557	1.188	1.637	0.954	63.666	35.671	33.641	31.971	34.864
bathtub	1376	27.212	21.900	19.032	17.297	16.114	2.208	1.425	1.133	1.565	1.129	67.201	33.514	31.577	30.767	34.219
bed	376	32.311	27.647	17.526	19.951	15.894	3.171	2.495	0.934	2.180	0.717	73.551	49.438	29.706	37.562	28.360
bench	2904	20.803	17.205	15.186	12.221	12.120	1.453	0.956	0.863	0.935	0.707	50.075	28.857	25.850	21.445	18.160
birdhouse	120	32.276	29.176	19.498	23.980	18.250	3.095	2.443	1.069	2.917	1.239	81.111	46.768	31.373	43.747	34.811
bookshelf	728	28.352	26.917	17.746	19.419	16.212	2.483	2.388	0.928	1.862	0.891	64.409	44.744	29.595	37.062	29.714
bottle	800	21.701	10.893	13.080	10.802	10.205	1.431	0.859	0.820	1.3/1	1.010	55.550 64 767	24.915	25.000	28.300	21 222
bus	504 1504	24 800	23.200	16 027	10.205	19.505	2.057	1.427	1.337	0745	1.060	62 856	21 102	26 847	30.970	25 794
cabinet	2520	24.890	21 170	18 015	16.039	17 328	1.710	1 236	0.838	1 102	1.000	59 865	3/ 180	20.647	23.090	33.784
camera	184	36 762	30 297	18 4 59	27 252	17.059	4 233	2 792	1.011	4 118	1 1 3 4	83.065	49 564	30.534	51 290	36 959
can	176	24 991	21 527	20.286	19 443	18,715	1.255	1 303	1 151	2 134	0.633	60 234	30.878	32 272	31 228	29.032
cap	96	33.213	19.539	18.662	17.445	15.275	3.279	1.009	1.277	1.290	0.971	74.738	30.302	29.678	31.702	32.842
car	5624	26.678	21.451	19.090	17.358	17.387	1.929	1.222	1.054	1.189	1.069	65.968	36.668	31.020	32.398	34.389
cellphone	1336	16.567	14.398	15.884	11.293	12.711	0.728	0.549	0.891	0.556	0.594	42.215	24.520	26.273	21.418	35.284
chair	10848	24.096	20.094	15.862	0.416	13.977	1.816	1.209	0.800	1.324	1.014	60.203	33.513	26.685	31.580	34.133
clock	1048	25.727	21.942	17.877	17.081	15.863	1.996	1.484	0.976	1.537	1.005	57.494	35.244	29.268	31.153	30.092
keyboard	104	17.760	14.226	14.835	9.821	11.847	0.878	0.584	0.755	0.444	0.934	44.448	22.136	24.017	16.820	31.681
dishwasher	152	23.315	20.718	19.294	17.466	18.092	1.483	1.168	1.024	1.422	0.210	50.122	30.906	31.479	29.311	16.392
display	1752	22.821	19.745	16.270	15.079	14.229	1.559	1.135	0.798	1.218	1.250	51.455	32.232	26.770	26.356	35.903
earphone	120	34.411	26.904	16.521	25.901	14.340	4.012	2.326	1.018	4.547	1.191	76.522	48.377	27.574	49.357	32.760
faucet	1192	29.935	23.018	14.203	21.963	10.721	3.186	1.955	1.569	1.754	0.338	66.154	40.282	24.903	42.439	20.544
file cabinet	480	25.942	22.775	18.778	18.112	17.541	1.942	1.492	1.005	3.227	0.965	65.258	37.221	30.949	42.723	27.470
guitar	1280	12.090	8.996	12.144	/.94/	0.///	0.437	0.239	1.426	0.385	0.699	26.276	18.313	22.347	18.514	29.145
ior	204	34.702	29.570	21.077	27.575	19.180	3.783	2.378	1.270	4.291	1.198	71.955	45.700	33.110	45.845	37.541
Jai knife	900 680	13 033	10 277	19.990	0.360	6 5 5 3	0.543	0 330	2 8 8 5	2.064	1.112	31 020	18 662	23 022	20.264	36.036
lamn	3712	27 753	23 019	15.000	20 443	10 766	2 804	2 188	2.885	3 381	1.213	60 129	41 450	26 144	36 941	37.052
lanton	736	18 469	14 384	15 556	11.529	13 178	0.855	0.506	0 790	1 551	1 435	40.658	21 525	24 916	19.728	40.856
loudspeaker	2560	28.254	24.627	19.158	20.241	17.635	2.411	1.833	1.070	2.079	1.148	67.650	39.619	31.280	36.650	35.478
mailbox	152	22.713	17.961	13.536	18.510	10.800	1.640	0.990	0.848	2.250	0.661	54.655	29.430	23.312	35.135	27.312
microphone	112	23.040	20.631	14.018	21.982	9.258	1.974	1.731	2.798	3.985	1.524	50.595	33.966	25.097	41.002	41.198
microwaves	248	26.206	22.422	19.855	18.005	18.308	1.956	1.381	1.087	1.591	1.306	63.709	36.277	32.883	39.564	37.046
motorbike	544	29.535	22.890	16.233	19.519	14.931	2.608	1.542	0.827	1.753	0.337	68.983	40.384	27.609	40.384	20.469
mug	344	32.684	25.790	22.169	21.857	20.417	3.056	1.805	1.301	2.184	0.307	72.250	37.005	34.851	37.001	19.663
piano	384	29.993	24.023	17.658	19.002	15.754	2.845	1.767	0.927	2.169	0.376	69.687	40.847	29.207	34.482	21.198
pillow	160	24.430	20.216	18.165	17.811	15.782	1.640	1.086	1.055	1.404	0.973	63.224	31.447	28.795	31.769	29.848
pistol	496	20.901	15.997	12.408	14.506	10.375	1.275	0.750	0.653	1.189	1.069	54.767	32.784	21.855	30.082	36.188
flowerpot	968	36.622	28.910	20.387	22.951	18.600	4.106	2.576	1.239	2.677	1.194	82.931	48.663	33.464	42.715	35.906
printer	272	32.040	27.407	17.810	20.495	16.462	3.012	2.238	0.921	2.235	0.858	75.801	44.694	29.497	39.077	30.358
remote	112	18.344	15.208	14.662	12.160	11.854	0.875	0.617	0.756	0.675	0.601	43.824	23.872	24.275	21.395	28.322
rifle	3800	17.733	11.86/	12.175	10.491	7.498	1.021	0.462	2.487	0.729	0.925	41.483	24.095	22.826	24.463	32.302
rocket	249	20.438	12.080	10.702	10.626	10 482	1.317	0.511	0.912	0.918	0.088	47.205	22.030	19.205	22.491 10 771	20.999
skalebbalu	5080	21.104	21 104	17 703	15 228	15.037	1.364	1 213	0.875	1.084	1 277	64 620	24.293	23.950	19.771	43 000
stove	352	26 358	22 565	18 159	17 806	16 740	2.038	1.215	0.964	1.618	0.824	64 162	36 998	29 846	30.074	26 681
table	13496	23.052	19.185	16 451	0.483	13,752	1.786	1.181	0.898	1.395	0.564	55 483	31.098	27.082	31.238	22.177
telephone	1744	16.080	14.176	15.824	11.040	12.614	0.690	0.544	0.872	0.553	0.478	39.098	23.954	26.184	20.767	20.838
tower	216	24.196	20.261	15.182	17.883	13.302	1.831	1.344	0.874	1.731	0.595	59.455	33.713	25.310	31.909	21.915
train	624	25.545	18.670	14.791	14.305	12.824	1.895	1.055	0.759	1.083	0.517	60.620	33.822	25.058	26.239	21.500
trash bin	552	28.235	24.318	21.501	21.316	20.074	2.283	1.624	1.248	1.107	1.209	65.054	36.620	34.132	34.752	37.648
watercraft	3104	23.740	17.670	12.740	13.562	10.818	1.711	1.001	0.689	1.012	0.397	58.678	32.644	22.239	24.141	18.701
washer	272	27.989	24.620	20.579	20.915	19.277	2.391	1.754	1.164	2.250	1.033	59.057	38.436	33.572	37.290	30.029
Average		25.459	20.674	16.977	16.597	14.532	2.060	1.361	1.151	1.701	0.893	60.169	34.008	28.200	31.724	30.943

Table 2. Detailed comparison results with other methods of point cloud completion on ShapeNet55 dataset. We list numbers of samples in each category in test set and calculate three metrics: CD with L1 norm (CD- l_1 , lower is better) multiplied by 10^3 , L2 norm (CD- l_2 , lower is better) multiplied by 10^3 and EMD multiplied by 10^3 . Note that the metrics are computed by 8,192 points.

ing multi-step point moving paths. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 7443–7452, 2021. **3**

- [6] P. Xiang, X. Wen, Y.-S. Liu, Y.-P. Cao, P. Wan, W. Zheng, and Z. Han. Snowflakenet: Point cloud completion by snowflake point deconvolution with skip-transformer. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pages 5499–5509, 2021. 1, 3
- [7] C. Xie, C. Wang, B. Zhang, H. Yang, D. Chen, and F. Wen. Style-based point generator with adversarial rendering for point cloud completion. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 4619–4628, 2021. 3
- [8] H. Xie, H. Yao, S. Zhou, J. Mao, S. Zhang, and W. Sun. Grnet: Gridding residual network for dense point cloud completion. In *European Conference on Computer Vision*, pages 365–381. Springer, 2020. 2, 3
- [9] Y. Yang, C. Feng, Y. Shen, and D. Tian. Foldingnet: Point cloud auto-encoder via deep grid deformation. In *Proceed*ings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 206–215, 2018. 2, 3
- [10] X. Yu, Y. Rao, Z. Wang, Z. Liu, J. Lu, and J. Zhou. Pointr: Diverse point cloud completion with geometry-aware transformers. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pages 12498–12507, 2021. 2, 3
- [11] W. Yuan, T. Khot, D. Held, C. Mertz, and M. Hebert. Pcn: Point completion network. In 2018 International Conference on 3D Vision (3DV), pages 728–737. IEEE, 2018. 1, 2, 3