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Abstract

This supplementary material is for our main manuscript
“Learning to Imagine: Diversify Memory for Incremental
Learning using Unlabeled Data”. We evaluate our method
with a tighter memory budget and show that our method is
robust to the size of memory. Besides, we put our genera-
tor at different positions of backbone to further analyze our
method. Evaluation with different trade-off parameters and
the ablation studies on ImageNet-Subset are also reported.
To analyze the actual memory cost of the proposed method,
we also count and analyze the storage cost of the proposed
method.

1. Incremental Learning with Tighter Memory
Budget.

We compare our method with other state-of-the-art
methods with a memory size of 1000 in the main pa-
per. To further verify the robustness and effectiveness of
our method, we train our method under the condition that
only 500 exemplars are available. Experimental results are
shown in Table S1. Although only keeps 500 exemplars
in memory, our method is still comparable to other methods
with 1000 or even 2000 exemplars. Specifically, on CIFAR-
100, compared with the recent method DDE [3] which uses
1000 exemplars, our method outperforms by 1.66% under
the 5-step setting and performs 1.25% better under the set-
ting of 10-step. Compared with advanced methods which
keep 2000 exemplars, our performance is superior to DER,
PODNet, UCIR and Icarl by 0.65%, 1.24%, 6.41% , 9.87%
respectively under the setting of 5-step incremental learn-
ing. On ImageNet-Subset, our method also achieves com-
parable accuracy with other methods that have double or
even quadruple memory budgets.

2. Further Analysis on the Position of GG

We argue that shallow layers of DNNs learn general
knowledge while deeper layers learn more task-specific
knowledge. The feature generator works well when it lo-
cates at the deeper layer of the backbone to tackle forgetting

CIFAR-100 ImageNet-Subset
Method 5-step 10-step 5-step 10-step
Avg Acc. | Avg Acc. | Avg Acc. | Avg
Acc
Memory size = 2000
Clearl [4] | 5629 | 5242 [ 65.04 [ 6872
UCIR [2] 59.66 55.77 70.84 68.09
PODNet [1] 64.83 64.03 75.54 74.58
DDE [3] 65.42 64.12 76.71 75.41
Ours 68.01 66.47 77.20 76.76
Memory size = 1000
"UCIR[Z] | 61.68 | 5830 [ 6813 [64.04
PODNet [1] 61.40 58.92 74.50 70.40
DDE [3] 64.41 62.20 71.20 69.05
Ours 67.08 64.41 75.73 74.94
Memory size = 500
“Ours | 66.07 | 6345 | 69.20 [ 66.95

Table S1. Comparison of the proposed method with state-of-the-
art methods at different budgets. We mark the best results at each
memory size in bold.

The position of G | Avg Acc.
After Stagel 44.92
After Stage2 60.68
After Stage3 66.47
After Stage4 66.31

Table S2. The impact of different positions of G. Ten steps incre-
mental setting on CIFAR-100 is adopted.

occurs at the deeper layers, but when it locates at too deep
layers, the semantic decoupling learning would fail to ex-
tract semantic-irreverent information from unlabeled data.
In the main paper, we introduce our feature generator G
which is put after stage 3 of ResNet. We also conduct ex-
periments of different positions of G, including putting G
after stages 1, 2, 3 and 4 of ResNet, respectively. Results in
Table S2 show that our method is effective when the gener-
ator is inserted after stages 2,3 and 4 of the ResNet, but it
fails to tackle forgetting when it is inserted after stage 1 of
ResNet. It is mainly because locating the generator at the



too shallow layers will hinder it from alleviating the forget-
ting on the deep layers. Moreover, our method achieves the
best performance when plugged after stage 3.

3. The Impact of Trade-off Parameters

Evaluation with different \. In the main paper, )\ is set to
2 for all experiments to defaults. We conduct experiments
on both CIFAR-100 and ImageNet-Subset datasets to indi-
cate the insensitivity to A of our method. Similar to the
main manuscript, we conduct the following experiments on
10-step setting. Other hyperparameters are kept to defaults.
Results in Table S3 show that the proposed method con-
sistently performs well when A € [1,5] on two datasets.
When A goes too large, the performance on CIFAR-100 is
going down because the model mainly focuses on semantic-
decoupling contrastive learning and leaves limited capacity
for semantic contrastive learning.

A 1 2 5 10
CIFAR-100 66.24 6647 6620 65.31
ImageNet-Subset  76.41  76.76 7626  76.36

Avg. acc.

Table S3. Experiments under different A\. CIFAR-100 and Ima-
geNet. During all experiments, we keep other parameters as de-
faults.

Evaluation with different \.,.. In the main paper, we
set hyperparameter \.,. = 0.3 for all experiments. We
conduct experiments of different A,y on both CIFAR-100
and ImageNet-Subset datasets. All experiments are con-
ducted on 10-step setting and we keep other parameters as
defaults. Results are shown in Table S5. We can see that
our method is not sensitive to hyperparameter A.,. on both
CIFAR-100 and ImageNet-Subset datasets and works well
when .y € [0.01,0.5]. When Ay > 0.5, the perfor-
mance starts to decline because the feature generator fo-
cuses too much on cycle constraint and hinders the seman-
tic contrastive learning as well as semantic-decoupling con-
trastive learning.

Method Avg Acc.
Baseline 70.59
+ ESC 76.35
+£SC +£SDC 76.48
+ ['SC + ‘CSDC + ﬁ%y(c. + L‘,%yD(‘(v 76.76

Table S4. Effectiveness of each objective function during train-
ing G. ‘Baseline’ denotes training model without G while other
methods use G for feature generator. Experiments are conducted
on ImageNet-Subset under the 10-step incremental setting.

4. Ablation Study on ImageNet-Subset

In the main manuscript, we conduct an ablation study on
CIFAR-100. In this section, we conduct more experiments
on ImageNet-Subset to further illustrate the effectiveness of
our proposed objective function.

4.1. Evaluation with different objective functions

We conduct experiments to analyze the effect of Lg¢,
Lpsc » LY and LG in the training process of G. Our
baseline is to train the deep model with the task-specific
training dataset D; and the limited exemplar memory M in
each task without feature generator G.

Results are shown in Table S4. Experiment results show
that the proposed feature generator G boosts the perfor-
mance about 6% only using loss Lg¢. Using Lspc, LG

as well as £/ could further improve the performance.

4.2. Impact of hyperparameters »n and d
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Figure S1. We investigate the impact of the number of gener-
ated samples (a) and the impact of depth of feature generator G
(b). All experiments are conducted on ImageNet-Subset and use
ImageNet-900 as the unlabeled dataset.

In the main paper, n denotes the number of generated
samples in each training batch and d denotes the number of
residual blocks in generator G. Experimental results of dif-
ferent n on ImageNet-Subset are shown in Fig. Sla. From
the figure, we can observe that when n € [1, 8], the accu-
racy of our method varies from 74% to 76%, which is higher
than the baseline (n = 0) by a large margin. This indicates
the effectiveness of our method. As for the depth d of the
feature generator G, results shown in Fig. S1b indicate that
our method is not sensitive to the depth of the generator G.
As the depth d increases from 1 to 4, the average accuracy
fluctuates within a narrow range, reaching approximately
around 76%.

Discussion. When generating more samples per exem-
plar, the performance will drop slightly both on CIFAR-
100 (see Fig.3 in the main paper) and ImageNet-Subset (see
Fig. S1). It is mainly because generating more samples will
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Avg. acc.

CIFAR-100 66.32 66.56 6647 6636 66.15 6584 6541
ImageNet-Subset 76.60 76.40 76.76 76.63 76.36 76.45 76.41

Table S5. Experiments of the impact of A.,. on CIFAR-100 and ImageNet. During all experiments, we set other parameters to defaults.

Method 10 steps on ImageNet-Subset
#Exemplars Mem. (exemplar) Mem. cost (G) Avg. Acc
PODNet [ 1] 20 2.38MB 0 74.58%
Ours-full 20 2.38MB 2.70MB 76.76%
Ours-half 20 1.19MB 2.70MB 74.94%
Ours-light 20 2.38MB 0.51MB 76.52%

Table S6. Memory cost (in MB) for exemplars and generators
(FP32) of each class on ImageNet-Subset.

hinder model learning new tasks because all generated sam-
ples are considered as old-task samples, leading to an im-
balance between old tasks and new tasks. To verify this,
we generate more samples and re-weight the learning losses
on old tasks and new tasks. Then, Avg. Acc increases
to 66.28% on CIFAR-100 10-step setting with n = 4 and
66.37% with n = 8, which achieve similar performance
with n = 2. Since each batch has different unlabeled data,
the generated samples of the same exemplar are changing,
thus n = 2 is enough.

5. Discussion about Memory Cost

To analyze the actual memory cost of the proposed
method, we count the storage cost of the exemplars and
our feature generator. Under the setting of ImageNet-
SubSet, we counted the average storage space the exem-
plar of (saved images) in JPEG format and the storage cost
for our proposed feature generator in FP32. As shown in
Tab. S6, we compare our method with PODNet and our
method outperforms PODNet at the cost of 2.70MB extra
space for storing our generator. When we cut down half
memory budge, our performance still outperforms POD-
Net (‘Ours-half’ in the table). Furthermore, the memory
cost for feature generator G can be reduced by simplifying
the residual block to a lighter structure: Relu — BN —
1x1Conv. — BN, in which 1 x1Conv. is used to fuse dif-
ferent channels come from two different feature maps (see
Fig.2 in the main paper). When adopting such a lightweight
generator, the performance barely drops, showing that our
method is flexible (‘Ours-light’ in the table).
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