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A. Kernel Estimation

Sec. 3.2 gives the reason why we deal with single image

super-resolution in the RAW-to-RAW domain. It is because

the kernel assumption is violated by the image processing

units that operate in a local neighborhood, such as the demo-

saicing and the denoising.

In this section, we further explain this motivation intu-

itively. We compare the final results and the intermediate

kernels generated by our default method on RAW and the

variation on RGB images. As shown in Fig. 1, the estimated

kernels on the last column are more centralized and sym-

metric for our default method, while the kernels diverge and

deviate from ideal distributions for the RGB variation. This

observation is consistent with the one in Sec. 3.2 and verify

the necessity of the RAW-to-RAW domain.

B. RAW Data Alignment

In this section, we further describe the details of our

RAW-to-RAW image alignment in Sec. 4.1.

• Given a RAW image pair {x,y}, where x is the HR

image and y has the same resolution but is the Bicubic

up-sampled from the LR image, we apply black level

correction, white balancing and demosaicing first, then

compute and compensate lens distortion. We denote the

processed image pair as {x̂, ŷ}, the undistortion map-

ping from y to ŷ as Uy→ŷ , and the distortion mapping

from x̂ to x as Dx̂→x.

• Then, we extract the regions of interest (ROI) from im-

ages. With a slight abuse of notation, we reuse {x,y}
and {x̂, ŷ} after ROI cropping.

For RealSR [1], since the ROI is not always centered,

we detect the ROI by matching feature points [4] be-

tween x̂ and the original RGB image xo from the

dataset, estimate the transformation from xo to x̂, and
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Figure 1. Comparisons of final results and intermediate kernels

between our default method on RAW and the variation on RGB.

then crop the minimum exterior rectangle of the trans-

formed xo in x̂. It is the same for the ROI extraction

of ŷ.

For SR-RAW [9], the ROI is always centered, so we

keep the full image of x̂ and crop the ROI in ŷ based

1



(a) (Bicubic up-sampled)

LR image y.

(b) (Warped) HR image xM (c) Color difference c (d) Optical flow u (e) Confidence map w

Figure 2. Examples of (c) the color difference c, (d) the optical flow u, and (e) the final confidence map w computed from (a) y and (b) xM.

on the ratio of focal lengths s = fy/fx, where fx and

fy are the focal length of x̂ and ŷ respectively. Then, if

the size of x̂ is [W,H], we crop the center region with

size [sW, sH] in ŷ as its ROI.

• Then, we estimate the global transformation model

Tŷ→x̂ from ŷ to x̂. Tŷ→x̂ is initialized as identity

transformation and then refined by minimizing the pho-

tometric error:

min
T

∑

p

∥x̂T (p) − (αŷp + β)∥, (1)

where T (p) is the transformed coordinate of p by T ,

α and β are the luminance compensation parameters.

The Eq. (1) is the same as in [1] except that it is operated

on the demosaicked RAW pair {x̂, ŷ} instead of RGB.

• Finally, we compose the mapping from the y to x as

My→x = Dx̂→x ⊙ Tŷ→x̂ ⊙ Uy→ŷ. After the map-

ping has been produced for each RAW pair {x,y},

we utilize the mappings for training, where y is only

cropped without any pixel interpolation, while the high-

resolution ground-truth x
∗ is warped by My→x for

loss computation.

However, the mapping My→x is usually imperfect and con-

tains misalignment due to parallax, illumination changes, or

even moving objects. Therefore, we compute a confidence

map w to measure the pixel-wise alignment quality between

{xM,y}.

• First, we compute the pixel-wise color difference be-

tween {xM,y} as cp = xM(p) − yp.

• Second, we compute the optical flow map u between

{xM,y} by the NL-Classic method in [6]. Note that

the optical flow vector here does not have to be accu-

rate. Instead, it only needs to have larger norm ∥up∥ at

misaligned pixels.

• Finally, we compute the per-pixel confidence wp as:

wp =
mp

z
exp(−

∥cp∥
2

σ2
c

−
∥up∥

2

σ2
u

), (2)

where σc and σu are the standard deviations that control

the color sensitivity and motion sensitivity respectively,

z is the maximum weight over all pixels, which normal-

izes all the weights into (0, 1]. Additionally, m is the

binary mask that excludes pixels with large color differ-

ence or flow vector norm, i.e., mp = 0 if ∥cp∥ > 0.5
or ∥up∥ > 1.5 pixels, otherwise mp = 1.

If {xM,y} are perfectly aligned, both the color difference

and the flow vector norm should be close to zero. Other-

wise, as shown in Fig. 2, the misalignments are caused by

non-static objects, parallax, lighting changes and reflections,

which lead to large color difference or/and large flow vector

norm, and finally give low confidence.



C. Additional Results

In this section, we give additional results besides the

ones in the main paper. We still made comparisons with

the officially released models from the methods that are

designed for real data including LP-KPN [1], MIRNet [7],

RAW-to-sRGB [11], Zoom-learn-Zoom [9]; the ones that are

trained on synthetic data including LapSRN [2], EDSR [3],

RCAN [10]; and the ones require external kernels as inputs

for inference including SRMD [8] and ZSSR [5].

Methods
RealSR SR-RAW

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
Bicubic 27.24 0.821 0.335 27.09 0.796 0.314

EDSR [3] 27.34 0.828 0.331 27.24 0.805 0.310

RCAN [10] 27.36 0.828 0.330 27.25 0.806 0.309

SRMD [8] 27.54 0.830 0.326 27.42 0.813 0.301

MIRNet [7] 28.47 0.858 0.301 - - -

Ours 33.36 0.937 0.196 34.26 0.944 0.173

Table 1. Quantitative comparisons with methods designed on syn-

thetic data and real data. ‘-’ indicates there is no released model for

such a test.

Comparisons of 3×: We first make comparisons under 3×
scale ratio. Both the quantitative comparisons in Tab. 1 and

qualitative comparisons in Fig. 3 and Fig. 6 indicate our

method performs better than others by a large margin.

Qualitative Comparisons of 4×: We also show additional

qualitative results in Fig. 5 and Fig. 6 for RealSR [1] and

SR-RAW [9] respectively.

Qualitative Comparisons of 2×: Since the 2× scale ratio

case is less challenging, the qualitative differences between

different methods is less significant than the 3× and the

4× cases. Even though, our method still performs visually

better on some images, especially the ones contains letters

as shown in Fig. 7.
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Figure 3. Qualitative comparisons on RealSR [1] under 3× scale ratio.



Figure 4. Qualitative comparisons on SR-RAW [9] under 3× scale ratio.



Figure 5. Qualitative comparisons on RealSR [1] under 4× scale ratio.



Figure 6. Qualitative comparisons on SR-RAW [9] under 4× scale ratio.
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Figure 7. Qualitative comparisons of 2× scale ratio on (a) RealSR [1] and (b) SR-RAW [9]


