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A. Additional Ablation Study

Study on Multi-Level Spatial Architecture. To further
analyze the design of our multi-level spatial feature bank,
we perform comparisons of different multi-level spatial ar-
chitectures in Table A. To be specific, we respectively em-
ploy feature pyramid network (FPN [8]) and pyramidal fea-
ture hierarchy (SSD [10]) as the multi-level spatial fea-
ture extractor of DDM-Net, and compare the performance.
Different from prior knowledge in object detection, DDM-
Net witnesses an inferior performance when combined with
FPN. We analyze that lateral and top-down connection lay-
ers of FPN are trained without explicit spatial location su-
pervisions (e.g., bounding boxes) in GEBD task [12], thus
leading to insufficient training of those layers and overall
performance degradation.

Spatial architecture 0.05 0.25 0.5 Average
Feature pyramid network 0.7511 0.8697 0.8815 0.8557

Pyramidal feature hierarchy 0.7643 0.8870 0.9016 0.8726

Table A. Study on multi-level spatial architecture on Kinetics-
GEBD, measured by F1 score at different Rel.Dis. thresholds.

Study on the Number of Attention Layers. We experi-
ment on the number of attention layers of intra-modal at-
tention module and cross-modal attention module, and dis-
play the results in Table B. DDM-Net achieves the best per-
formance with 6 intra-modal attention layers and 6 cross-
modal attention layers. With the increase of the number of
attention layers, the performance gain of increasing layers
decreases.
Study on the Number of Learnable Queries ω. The num-
ber of learnable queries ω influences the performance of
DDM-Net, as demonstrated in Table C. Too few queries

B: Corresponding author.

Intra Cross 0.05 0.25 0.5 Average
1 1 0.7584 0.8774 0.8895 0.8633
3 3 0.7622 0.8841 0.8983 0.8698
6 6 0.7643 0.8870 0.9016 0.8726

Table B. Study on the number of attention layers on Kinetics-
GEBD, measured by F1 score at different Rel.Dis. thresholds.

(ω = 1) are not enough to capture all patterns, while too
many queries (ω = 10) lead to redundant intra-modal fea-
tures. In experiments, we observe that DDM-Net reaches
the best performance when ω is set to 5.

ω 0.05 0.25 0.5 Average
1 0.7579 0.8763 0.8884 0.8622
3 0.7614 0.8853 0.9004 0.8709
5 0.7643 0.8870 0.9016 0.8726

10 0.7592 0.8765 0.8888 0.8626

Table C. Study on the number of learnable queries ω on Kinetics-
GEBD, measured by F1 score at different Rel.Dis. thresholds.

Study on Positional Embeddings of Cross-Modal Atten-
tion. We conduct ablations on positional embeddings of
cross-modal attention module, as shown in Table D. Adding
positional embeddings in the cross-modal attention mod-
ule harms the performance, hence we analyze that cross-
modality feature aggregation should be directly operated on
raw features. It is worth noting that learnable positional
embeddings of intra-modal attention module cannot be re-
moved, as they are employed to localize key features of
clips, similar to positional embeddings in previous detec-
tion tasks (e.g., to localize objects in object detection, to
localize actions in temporal action detection).
Study on Balanced Sampler. Since boundaries and non-
boundaries are extremely imbalanced (about 1:6), we follow
[12] to exploit the same balanced sampler. As shown in
Table E, the performance of balanced sampler is better.



Aggregation 0.05 0.25 0.5 Average
cross w/ PE 0.7510 0.8720 0.8841 0.8576

cross w/o PE 0.7590 0.8770 0.8894 0.8631
intra + cross w/ PE 0.7597 0.8801 0.8931 0.8659
intra + cross w/o PE 0.7643 0.8870 0.9016 0.8726
* PE: positional embedding, w/: with, w/o: without.

Table D. Study on positional embedding of cross-modal atten-
tion module on Kinetics-GEBD, measured by F1 score at different
Rel.Dis. thresholds.

Sampler 0.05 0.25 0.5 Average
Plain sampler 0.7456 0.8784 0.8932 0.8627

Balanced sampler 0.7643 0.8870 0.9016 0.8726

Table E. Study on balanced sampler on Kinetics-GEBD, measured
by F1 score at different Rel.Dis. thresholds.

B. More Results

More comparisons of different representations. Due to
the limited space, we present the best performance of each
representation in Table 4a of the main paper. In this sec-
tion, we display the complete result of each representation
and perform more comparisons of different representations.
First, only DDM obtains the best performance when stride
s is set to 6, indicating that compared with other represen-
tations, DDM can take advantage of larger temporal con-
texts. Second, if we fairly compare the representations un-
der the same setting s = 3, DDM still outperforms other
representations, demonstrating the effectiveness of dense
motion representation in GEBD task. Third, in Table G,
pairwise flow and RGB differences are superior to consec-
utive (non-pairwise) flow and RGB differences at the most
strict threshold (Rel.Dis. = 0.05), demonstrating the effec-
tiveness of pairwise calculation in GEBD task.

Representation w s 0.05 0.25 0.5 Average
RGB 5 3 0.6793 0.8589 0.8772 0.8375
RGB 5 6 0.6118 0.8462 0.8772 0.8180
Flow 5 3 0.6625 0.8045 0.8206 0.7877
Flow 5 6 0.6091 0.7703 0.7975 0.7530

RGB diff 5 3 0.7272 0.8591 0.8753 0.8440
RGB diff 5 6 0.6638 0.8629 0.8876 0.8399

DDM 5 3 0.7476 0.8688 0.8813 0.8544
DDM 5 6 0.7512 0.8738 0.8861 0.8591

* w and s are defined in the main paper.

Table F. More comparisons of different representations on
Kinetics-GEBD, measured by F1 score at different Rel.Dis.
thresholds.

DDM-Net with CSN backbone. Owing to the limited
space of the main paper, we report the performance of
DDM-Net on testing set when it is combined with IG-
65M [3] pretrained CSN [14] backbone network. To val-
idate our method, we further perform ablations on the val-

Representation 0.05 0.25 0.5 Average
Flow 0.6625 0.8045 0.8206 0.7877

Pairwise Flow 0.7012 0.7910 0.7998 0.7806
RGB diff 0.7272 0.8591 0.8753 0.8440

Pairwise RGB diff 0.7311 0.8617 0.8753 0.8461

Table G. Comparisons of pairwise and non-pairwise flow and RGB
differences on the validation set of Kinetics-GEBD, measured by
F1 score at different Rel.Dis. thresholds.

idation set (annotations of the testing set are not available,
entries to the testing server are limited). In Table H, we
observe that DDM-Net can still increase the performance
of powerful CSN representations by nearly 2 percent, from
79.3% to 81.3%.

Model 0.05 0.25 0.5 Average
CSN + FC 0.7933 0.8954 0.9074 0.8834

CSN + DDM-Net 0.8128 0.9077 0.9218 0.8972

Table H. Performance of DDM-Net with CSN backbone on the
validation set of Kinetics-GEBD, measured by F1 score at differ-
ent Rel.Dis. thresholds.

Time analysis. Average time cost of DDM-Net (0.123s) is
close to [12] (0.066s). We calculate pairwise differences
of frames in a sliding window (T frames, the sliding stride
is s) rather than the whole video of E frames. Hence, the
run-time complexity of DDM in a video is O((E/s)× T ×
T ) instead of O(E × E). In practice, T could be much
smaller than E (e.g., E = 300, T = 11, s = 3). Furthermore,
computations can be re-used for subsequent frames since
sliding windows are overlapped.
Complete Results of Precision, Recall and F1 score.
Complete results of precision, recall and F1 score are pre-
sented in Table I and Table J. It is noteworthy that several
methods (SceneDetect [1], PA [12]) achieve high precision
yet very low recall, while several methods (TCN [7]) ob-
tain high recall yet low precision. The first type of methods
(high precision yet very low recall) focus on salient bound-
aries (e.g., shot changes) and miss other event boundaries,
while the second type of methods (high recall yet low preci-
sion) make as many predictions as possible and recall many
false positives. As a result, both of them do not achieve
superior F1 score.

As for competitive methods [4, 6, 13] of LOVEU chal-
lenge, they do not present results on the standard validation
set of Kinetics-GEBD for fair comparisons. Therefore, we
compare DDM-Net with them on the testing set of Kinetics-
GEBD in Table 3 of main paper (evaluated on the server of
the challenge).

C. Visualization
More Comparisons of Sparse and Dense Motion Rep-
resentation. We add more comparisons of sparse and
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(a) Sparse and dense motion representations of boundary examples.
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(b) Sparse and dense motion representations of non-boundary examples.

Figure A. More comparisons of sparse motion representation
(black lines, optical flow) and dense motion representation (green
lines, some are omitted for clarity, dense feature differences).
Numbers on lines indicate the magnitude of motion between two
frames. Dense motion representation provides more holistic tem-
poral cues to better distinguish boundaries and non-boundaries.

dense motion representation, as displayed in Figure A. Fig-
ure A(a) illustrates two kinds of boundaries. The example
in the first row is an ‘event A→event B→event A’ bound-
ary (content of the boundary frame is different from other
frames), while the second one is an ‘event A→event B’
boundary (the boundary frame is one frame of event A or
event B). In both cases, the average magnitude of dense mo-
tion representation is larger than sparse motion representa-
tion, enabling the model to detect boundaries more easily.
Figure A(b) also displays two kinds of non-boundaries. The
first one is a non-boundary without large temporal changes,
while the example in the second row is a non-boundary with
temporal noise (camera blur). As our proposed DDM is cal-
culated upon multi-level features instead of raw frames, it
is more robust to noise than optical flow. Hence, the av-

erage magnitude of dense motion representation is smaller
than sparse motion representation. Comparing the average
magnitude in Figure A(a) and Figure A(b), we observe that
holistic temporal clues of dense motion representation en-
able the model to better distinguish boundaries and non-
boundaries.
Visualization of Progressive Attention Module. To fur-
ther explore the effects of Progressive Attention Module,
we present attention weight maps of intra-modal attention
module and cross-modal attention module. In both Fig-
ure B and Figure C, differences between columns are signif-
icant, indicating that features of several moments or queries
are enhanced. Figure B displays T × ω cross-attention
weight maps of intra-modal attention module. We observe
that weight maps of non-boundaries are similar, as shown
in the right subfigure. Since there are no obvious tempo-
ral changes in non-boundaries, attention weights of queries
approximately follow Gaussian distribution (the weight de-
creases from the center frame to both sides). In contrast,
weight maps of boundaries are diverse (left 2 subfigures),
where queries attend to moments where temporal changes
happen. Weight map of the last cross-attention layer in
cross-modal attention module is shown in Figure C, where
features of several queries are enhanced under the cross-
modality guidance.
More Qualitative Results. We add more qualitative results
to demonstrate the effectiveness of our proposed DDM-Net,
as illustrated in Figure D. According to those examples, we
conclude that DDM-Net predicts fewer false positives (high
precision) and hits more ground truths (high recall) than
PC [12], thus obtains a superior F1 score.

D. More Implementation Details
Complete Loss Function. We only present one classifica-
tion loss function in the main paper because of the limited
space. In practice, the loss function is the sum of 3 binary
classification losses:

Lbc =
1

N

N∑
η=1

(Lfu,η + LA,η + LD,η),

Lfu,η = −(p̂η log pfu,η + (1− p̂η) log(1− pfu,η)),

LA,η = −(p̂η log pA,η + (1− p̂η) log(1− pA,η)),

LD,η = −(p̂η log pD,η + (1− p̂η) log(1− pD,η)),

(A)

where pfu,η , pA,η and pD,η are binary classification proba-
bilities of fusion logit l, appearance logit lA and difference
logit lD of the sample. N is the total number of training
samples. p̂η is 1 if the sample is marked as a boundary, and
otherwise 0.
Detailed Formulas of Progressive Attention Module.
Due to the limited space of the main paper, we define q, k
and v of intra-modal attention module and cross-modal at-
tention module respectively. In this section, we present the
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Figure B. Visualization of cross-attention weight maps in the intra-modal attention module, averaged among multiple heads of the last
cross-attention layer. The y-axis is event queries and the x-axis represents timestamps of features. The color represents the magnitude of
weight, as the weight becomes larger from black to white. Best viewed in color.

(a) Precision
Rel.Dis. threshold 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 avg

Unsuper.
SceneDetect [1] 0.731 0.792 0.819 0.837 0.847 0.856 0.862 0.867 0.870 0.872 0.835

PA - Random [12] 0.737 0.884 0.933 0.956 0.968 0.975 0.979 0.981 0.984 0.986 0.938
PA [12] 0.836 0.944 0.965 0.973 0.978 0.980 0.983 0.985 0.986 0.989 0.962

Super.

BMN [9] 0.128 0.141 0.148 0.152 0.156 0.159 0.162 0.164 0.165 0.167 0.154
BMN-StartEnd [9] 0.396 0.479 0.509 0.525 0.534 0.540 0.544 0.547 0.549 0.551 0.517
TCN-TAPOS [7] 0.518 0.622 0.665 0.690 0.706 0.718 0.727 0.733 0.738 0.743 0.686

TCN [7] 0.461 0.519 0.538 0.547 0.553 0.557 0.559 0.561 0.563 0.564 0.542
PC [12] 0.624 0.753 0.794 0.816 0.828 0.836 0.841 0.844 0.846 0.849 0.803

DDM-Net 0.732 0.812 0.836 0.849 0.856 0.860 0.863 0.865 0.867 0.869 0.841

(b) Recall
Rel.Dis. threshold 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 avg

Unsuper.
SceneDetect [1] 0.170 0.185 0.192 0.197 0.200 0.202 0.204 0.206 0.207 0.207 0.197

PA - Random [12] 0.218 0.289 0.326 0.350 0.364 0.374 0.381 0.386 0.389 0.393 0.347
PA [12] 0.259 0.329 0.355 0.368 0.377 0.382 0.386 0.390 0.392 0.395 0.363

Super.

BMN [9] 0.338 0.369 0.385 0.397 0.407 0.414 0.420 0.426 0.430 0.434 0.402
BMN-StartEnd [9] 0.648 0.766 0.817 0.846 0.864 0.876 0.885 0.892 0.897 0.900 0.839
TCN-TAPOS [7] 0.420 0.508 0.550 0.576 0.594 0.609 0.619 0.627 0.633 0.639 0.577

TCN [7] 0.811 0.894 0.923 0.938 0.947 0.952 0.956 0.959 0.961 0.963 0.930
PC [12] 0.626 0.764 0.814 0.843 0.859 0.871 0.879 0.885 0.889 0.892 0.832

DDM-Net 0.800 0.875 0.899 0.912 0.920 0.926 0.930 0.933 0.935 0.937 0.907

(c) F1

Rel.Dis. threshold 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 avg

Unsuper.
SceneDetect [1] 0.275 0.300 0.312 0.319 0.324 0.327 0.330 0.332 0.334 0.335 0.318

PA - Random [12] 0.336 0.435 0.484 0.512 0.529 0.541 0.548 0.554 0.558 0.561 0.506
PA [12] 0.396 0.488 0.520 0.534 0.544 0.550 0.555 0.558 0.561 0.564 0.527

Super.

BMN [9] 0.186 0.204 0.213 0.220 0.226 0.230 0.233 0.237 0.239 0.241 0.223
BMN-StartEnd [9] 0.491 0.589 0.627 0.648 0.660 0.668 0.674 0.678 0.681 0.683 0.640
TCN-TAPOS [7] 0.464 0.560 0.602 0.628 0.645 0.659 0.669 0.676 0.682 0.687 0.627

TCN [7] 0.588 0.657 0.679 0.691 0.698 0.703 0.706 0.708 0.710 0.712 0.685
PC [12] 0.625 0.758 0.804 0.829 0.844 0.853 0.859 0.864 0.867 0.870 0.817

DDM-Net 0.764 0.843 0.866 0.880 0.887 0.892 0.895 0.898 0.900 0.902 0.873

Table I. Precision, Recall and F1 score of state-of-the-art GEBD methods on Kinetics-GEBD.



(a) Precision
Rel.Dis. threshold 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 avg

Unsuper.
SceneDetect 0.391 0.506 0.532 0.576 0.596 0.608 0.621 0.628 0.641 0.647 0.575

PA - Random [12] 0.206 0.304 0.356 0.404 0.432 0.452 0.466 0.481 0.491 0.500 0.409
PA [12] 0.470 0.599 0.662 0.708 0.740 0.755 0.771 0.784 0.795 0.801 0.708

Super.

ISBA [2] 0.119 0.185 0.230 0.268 0.301 0.329 0.356 0.379 0.392 0.405 0.296
TCN [7] 0.140 0.187 0.200 0.204 0.207 0.208 0.210 0.211 0.211 0.211 0.199
CTM [5] 0.154 0.197 0.212 0.221 0.228 0.233 0.237 0.242 0.244 0.245 0.221

TransParser [11] 0.230 0.302 0.345 0.377 0.398 0.410 0.420 0.427 0.432 0.437 0.378
PC [12] 0.650 0.741 0.782 0.805 0.821 0.829 0.836 0.842 0.846 0.851 0.800

DDM-Net 0.591 0.667 0.700 0.720 0.732 0.737 0.741 0.744 0.748 0.751 0.713

(b) Recall
Rel.Dis. threshold 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 avg

Unsuper.
SceneDetect 0.018 0.023 0.025 0.027 0.028 0.028 0.029 0.029 0.030 0.030 0.027

PA - Random [12] 0.128 0.189 0.221 0.252 0.269 0.281 0.290 0.299 0.305 0.311 0.255
PA [12] 0.292 0.372 0.412 0.440 0.460 0.470 0.480 0.488 0.494 0.498 0.441

Super.

ISBA [2] 0.095 0.158 0.225 0.263 0.296 0.323 0.340 0.360 0.373 0.386 0.282
TCN [7] 0.757 0.940 0.974 0.985 0.989 0.990 0.994 0.994 0.994 0.994 0.961
CTM [5] 0.596 0.752 0.811 0.843 0.860 0.875 0.886 0.894 0.898 0.901 0.831

TransParser [11] 0.386 0.516 0.590 0.642 0.673 0.689 0.705 0.714 0.721 0.726 0.636
PC [12] 0.436 0.497 0.525 0.541 0.551 0.556 0.561 0.565 0.568 0.572 0.537

DDM-Net 0.617 0.695 0.730 0.751 0.764 0.769 0.774 0.777 0.780 0.783 0.744

(c) F1

Rel.Dis. threshold 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 avg

Unsuper.
SceneDetect 0.035 0.045 0.047 0.051 0.053 0.054 0.055 0.056 0.057 0.058 0.051

PA - Random [12] 0.158 0.233 0.273 0.310 0.331 0.347 0.357 0.369 0.376 0.384 0.314
PA [12] 0.360 0.459 0.507 0.543 0.567 0.579 0.592 0.601 0.609 0.615 0.543

Super.

ISBA [2] 0.106 0.170 0.227 0.265 0.298 0.326 0.348 0.369 0.382 0.396 0.302
TCN [7] 0.237 0.312 0.331 0.339 0.342 0.344 0.347 0.348 0.348 0.348 0.330
CTM [5] 0.244 0.312 0.336 0.351 0.361 0.369 0.374 0.381 0.383 0.385 0.350

TransParser [11] 0.289 0.381 0.435 0.475 0.500 0.514 0.527 0.534 0.540 0.545 0.474
PC [12] 0.522 0.595 0.628 0.646 0.659 0.665 0.671 0.676 0.679 0.683 0.642

DDM-Net 0.604 0.681 0.715 0.735 0.747 0.753 0.757 0.760 0.763 0.767 0.728

Table J. Precision, Recall and F1 score of state-of-the-art GEBD methods on TAPOS.

Figure C. Visualization of cross-attention weight maps in the
cross-modal attention module, averaged among multiple heads of
the last cross-attention layer. The y-axis and the x-axis represent
event queries. Best viewed in color.

complete inference process of attention modules with de-
tailed formulas. First, we review Attention and Multi-Head
Attention mechanism [15],

Attn(q,k,v) = softmax(
qk⊺

√
dk

)v,

MHA(q,k,v) = Concat(head1, · · · , headH)WO,

headi = Attn(qWq
i ,kW

k
i ,vW

v
i ),

(B)

where dk is the dimension of features and W is the learn-
able projection matrix to transform the feature. Then, the
calculation of each layer in intra-modal attention module



and cross-modal attention module can be formulated as:

q′ = LN(q+ MHA(q,q,q)),

q′′ = LN(q′ + MHA(q′,k,v)),

Output = LN(q′′ + FFN(q′′)),

(C)

where LN and FFN denote layer normalization and feed for-
ward network.
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Figure D. More qualitative results and comparisons of PC, DDM-Net and ground truths on Kinetics-GEBD dataset.


