
Appendix
We provide the supplementary materials in the following.

In Sec. A, we describe the details of datasets that are used
for pre-training from public sources. In Sec. B, we illustrate
the preprocessing and implementation details of fine-tuning
tasks using BTCV and MSD datasets. In Sec. C, we present
qualitative and quantitative comparisons of segmentation
tasks in MRI modality from MSD dataset. The presented re-
sults include benchmarks from all top-ranking methods using
the MSD test leaderboard. In Sec. D, the model complexity
analysis is presented. Finally, we provide pseudocode of
Swin UNETR self-supervised pre-training in Sec. E.

A. Pre-training Datasets
In this section, we provide additional information for

our pre-training datasets. The proposed Swin UNETR is
pre-trained using five collected datasets. The total data
cohort contains 5,050 CT scans of various body region of
interests (ROI) such as head, neck, chest, abdomen, and
pelvis. LUNA16 [47], TCIA Covid19 [18] and LiDC [2]
contain 888, 761 and 475 CT scans which composes the
chest CT cohort. The HNSCC [22] has 1,287 CT scans from
head and neck squamour cell carcinoma patients. The TCIA
Colon dataset [29] comprises the abdomen and pelvis cohort
with 1,599 scans. We split 5% of each dataset for validation
in the pre-training stage. Table S.1 summarizes sources of
each collected dataset. Overall, the number of training and
validation volumes are 4,761 and 249, respectively. The
Swin UNETR encoder is pre-trained using only unlabeled
images, annotations were not utilized from any of theses
datasets. We first clip CT image intensities from ´1000
to 1000, then normalize to 0 and 1. To obtain informative
patches of covering anatomies, we crop sub-volumes of
96 ˆ 96 ˆ 96 voxels at foregrounds, and exclude full air
(voxel = 0) patches. In summary, Swin UNETR is pre-trained
via a diverse set of human body compositions, and learn a
general-purpose representation from different institutes’ data
that can be leveraged for wide range of fine-tuning tasks.

B. Preprocessing Pipelines
We report fine-tuning results on two public benchmarks:

BTCV [32] and MSD challenge [48]. BTCV contains 30 CT
scans with 13 annotated anatomies and can be formulated as
a single multi-organ segmentation task. The MSD contains
10 tasks for multiple organs, from different sources and using
different modalities. Details regarding preprocessing these
datasets are provided in the subsequent sub-sections of 2.1
and 2.2.

B.1. BTCV Dataset

All CT scans are interpolated into the isotropic voxel
spacing of r1.5ˆ1.5ˆ2.0s mm. The multi-organ segmen-

tation problem is formulated as a 13 class segmentation,
which includes large organs such as liver, spleen, kidneys and
stomach; vascular tissues of esophagus, aorta, IVC, splenic
and portal veins; small anatomies of gallbladder, pancreas
and adrenal glands. Soft tissue window is used for clipping
the CT intensities, then normalized to 0 and 1 followed by
random sampling of 96ˆ96ˆ96 voxels. Data augmentation
of random flip, rotation and intensities shifting are used for
training, with probabilities of 0.1, 0.1, and 0.5, respectively.

B.2. MSD Dataset

The MSD challenge contains 6 CT and 4 MRI datasets.
We provide additional parameters of pre-processing and
augmentation details for each task as follows:
Task01 BrainTumour: The four modalities MRI images
for each subject are formed into 4 channels input. We convert
labels to multiple channels based on tumor classes. which
label 1 is the peritumoral edema, label 2 is the GD-enhancing
tumor, and label 3 is the necrotic and non-enhancing tumor
core. Label 2 and 3 are merged to construct tumor core
(TC), label 1, 2 and 3 are merged to construct whole tumor
(WT), and label 2 is the enhancing tumor (ET). We crop the
sub-volume of 128ˆ128ˆ128 voxels and use channel-wise
nonzero normalization for MRI images. Data augmentation
probabilities of 0.5, 0.1 and 0.1 are set for random flips at
each axis, intensities scaling and shifting, respectively.
Task02 Heart: The heart MRI images are interpolated to the
isotropic voxel spacing of 1.0mm. Channel-wise nonzero
normalization is applied to each scan. We sample the training
sub-volumes of 96ˆ96ˆ96 voxels by ratio of positive and
negative as 2:1. Augmentation probabilities for random flip,
rotation, intensities scaling and shifting are set to 0.5, 0.1,
0.2, 0.5, respectively.
Task03 Liver: Each CT scan is interpolated to the isotropic
voxel spacing of 1.0mm. Intensities are scaled to r´21,189s,
then normalized to r0,1s. 3D patches of 96ˆ96ˆ96 voxels
are obtained by sampling positive and negative ratio of
1:1. Data augmentation of random flip, rotation, intensities
scaling and shifting are used, for which the probabilities are
set to 0.2, 0.2, 0.1, 0.1, respectively.
Task04 Hippocampus: Each hippocampus MRI image is
interpolated by voxel spacing of 0.2ˆ0.2ˆ0.2, then applied
spatial padding to 96 ˆ 96 ˆ 96 as the input size of Swin
UNETR model. Same as other MRI datasets, channel-wise
nonzero normalization is used for intensities. Probability
of 0.1 is used for random flip, rotation, intensity scaling &
shifting.
Task05 Prostate: We utilize both given modalities for
prostate MRI images for each subject as two channels input.
Channel-wise nonzero normalization is used. Voxel spacing
of 0.5 and spatial padding of each axis are employed to
construct the input size of 96 ˆ 96 ˆ 96. We use random
flip, rotation, intensity scaling and shifting with probabilities
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Figure S.1. Qualitative visualizations of the proposed Swin UNETR and DiNTS on MSD Tasks

Dataset Region of Interest #Total Samples Source Train/Validation
LUNA16 [47] Chest 888 luna16.grand-challenge.org/Data/ 844/44
TCIA Covid19 [18] Chest 761 wiki.cancerimagingarchive.net/display/Public/COVID-19 723/38
HNSCC [22] Head/Neck 1287 wiki.cancerimagingarchive.net/display/Public/HNSCC 1223/64
TCIA Colon [29] Abdomen/pelvis 1599 www.cancerimagingarchive.net/collections/ 1520/79
LiDC [2] Chest 475 wiki.cancerimagingarchive.net/display/Public/LIDC-IDRI 451/24

Table S.1. Summary of datasets for pre-training, the use of cohorts identifies diversified regions of interest.

of 0.5 as data augmentations. Random affine is applied as
additional transformation with scale factor of r0.3,0.3,0.0s

and rotation range of r0,0,pis at each axis.

Task06 Lung: We interpolate each image to isotropic voxel
spacing of 1.0. Houndsfield unit (HU) range of [-1000, 1000]
is used and normalized to r0,1s. Subsequently, training sam-
ple are cropped to96ˆ96ˆ96with positive and negative ratio
of 2 : 1. Augmentation probabilities of 0.5, 0.3, 0.1, 0.1 are
used for random flip, rotation, intensities scaling and shifting.

Task07 Pancreas: We clip the intensities to a range of
´87 to 199. Patch size of 96 ˆ 96 ˆ 96 is used to sample
training data with positive and negative ratio of 1:1. We set
augmentation of random flip, rotation and intensity scaling
to probabilities of 0.5, 0.25 and 0.5, respectively.

Task08 HepaticVessel: To fit the optimal tissue window for
hepatic vessel and tumor, we clip each CT image intensities
to r0, 230s HU. We apply data augmentation same with
Task07 Pancreas for training.
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Organ Task02 Heart Task04 Hippocampus Task05 Prostate MRI tasks Avg
Metric DSC1 NSD1 DSC1 DSC2 Avg. NSD1 NSD2 Avg. DSC1 DSC2 Avg. NSD1 NSD2 Avg. DSC NSD
Kim et al [31] 93.11 96.44 90.11 88.72 89.42 97.77 97.73 97.75 72.64 89.02 80.83 95.05 98.03 96.54 80.96 93.43
Trans VW [23] 93.33 96.51 90.29 88.77 89.53 97.87 97.67 97.77 73.69 88.88 81.29 95.42 98.52 96.97 81.32 93.72
C2FNAS [59] 92.49 95.81 89.37 87.96 88.67 97.27 97.35 97.31 74.88 88.75 81.82 98.79 95.12 96.96 81.24 93.49
Models Gen [65] 93.33 96.51 90.29 88.77 89.53 97.87 97.67 97.77 73.69 88.88 81.29 95.42 98.52 96.97 81.32 93.72
nnUNet [28] 93.30 96.74 90.23 88.69 89.46 97.79 97.53 97.75 76.59 89.62 83.11 96.27 98.85 97.56 81.74 93.91
DiNTS [27] 92.99 96.35 89.91 88.41 89.16 97.76 97.56 97.66 75.37 89.25 82.31 95.96 98.82 97.39 81.76 94.03
SwinUNETR 92.62 96.23 89.95 88.42 89.19 97.63 97.32 97.48 75.65 89.15 82.40 95.89 98.70 97.30 82.14 94.66

Table S.2. Additional MSD MRI test dataset performance comparison of Dice and NSD. Benchmarks obtained from MSD test leaderboard.
Task01 BrainTumuor results are shown in the paper. Note: The results reported for TransVW [23] and Models Genesis [65] are from the
official leaderboard for MRI tasks.

Models #Params (M) FLOPs (G) Inference Time (s)
nnUNet [28] 19.07 412.65 10.28
CoTr [55] 46.51 399.21 19.21
TransUNet [7] 96.07 48.34 26.97
ASPP [10] 47.92 44.87 25.47
SETR [61] 86.03 43.49 24.86
UNETR 92.58 41.19 12.08
SwinUNETR 61.98 394.84 13.84

Table S.3. Comparison of number of parameters, FLOPs and
averaged inference time for various models in BTCV experiments.

Task09 Spleen: Spleen CT scans are pre-process with
interpolation isotropic voxel spacing of 1.0mm on each axis.
Soft tissue window of r´125,275s HU is used for the portal
venous phase contrast enhanced CT images. We use the
training data augmentation of random flip, intensity scaling &
shifting with probabilities of 0.15, 0.1, and 0.1, respectively.
Task10 Colon: We use HU range of r´57,175s for the colon
tumor segmentation task and normalized to 0 and 1. Next,
we sample training sub-volumes by positive and negative
ratio of 1 : 1. Same as Task07 and Task08, we use random
flip, rotation, intensity scaling as augmentation transforms
with probabilities of 0.5, 0.25 and 0.5, respectively.

C. Results
C.1. MSD Qualitative Comparisons

In this section, we provide extensive segmentation
visualization from MSD dataset. In particular, we compare
two cases randomly selected from Swin UNETR and DiNTS
for each MSD task. As shown in Fig S.1, DiNTS includes
the under-segmentation due to lack of parts of labels (Heart,
Hippocampus). The missing parts result in a lower Dice score.
On BrainTumour, Liver, Pancreas, HepaticVessel and Colon
tasks, the comparison indicate that our method achieves
better segmentation where the under-segmentation of tumors
are observed in DiNTS. For Lung task, the over-segmentation
is observed with DiNTS where surrounding tissues are
included with label of the lung cancer, while Swin UNETR
clearly delineate the boundary. In Heart and Spleen, DiNTS

and Swin UNETR have comparable Dice score, yet Swin
UNETR performs better segmentation on tissue corner (See
Fig S.1). Overall, Swin UNETR achieves better segmentation
results and solves the under- and over-segmentation outliers
as observed in segmentation via DiNTS.

C.2. MSD Quantitative Comparisons

In this section, we provide the quantitative benchmarks
of MRI segmentation tasks from MSD dataset. In addition
to Task01 BrainTumour, we implement experiment on three
remaining MRI dataset including Heart, Hippocampus and
Prostate (see Table. S.2). The results are directly obtained
from the MSD6 leaderboard. Regarding MRI benchmark, we
achieve much better performance on brain tumor segmen-
tation presented in the paper, with average Dice improvement
of 2% against second best performance. Comparing to
models genesis [65], nnUNet [28], the Swin UNETR shows
comparable results on Heart, Hippocampus and Prostate.
Overall, we achieve the best average results (Dice of 82.14%
and NSD of 94.66%) across four MRI datasets, showing
Swin UNETR’s superiority of medical image segmentation.

D. Model Complexity and Pre-training Time
In this section, we examine the model complexity along

with inference time. In Table. S.3, the number of network
paramerts, FLOPs, and averaged inference time of Swin
UNETR and baselines on BTCV dataset are presented. We
calculate the FLOPs and inference time based on input size
of 96ˆ96ˆ96 used in the BTCV experiments with sliding
window approach. Swin UNETR shows moderate size of
parameter with 61.98M, less than transformer-based methods
such as TransUNet [7] of 96.07M, SETR [62] of 86.03M,
and UNETR [24] of 92.58M, but larger than 3DUNet
(nnUNet) [28] of 19.07M, ASPP [10] 47.92M. Our model
also shows comparable FLOPs and inference time in terms of
3D approaches such as nnUNet [28] and CoTr [55]. Overall,
Swin UNETR outperforms CNN-based and other transformer-
based methods while perserves moderate model complexity.

6https : / / decathlon - 10 . grand - challenge . org /
evaluation/challenge/leaderboard/

15



Algorithm S.1 Pytorch Pseudocode of Swin UNETR Self-Supervised Pre-training.
# RandRot: transforms of random rotation
# Cutout: transforms of cutout
# Encoder: swin transformer encoder
# RecHead: reconstruction head
# RotHead: rotation head
# CnHead: contrastive head
# Linpaint: reconstruction loss
# Lrot: rotation loss
# Lcontrast: contrastive loss
for x in Loader: # minibatch of samples

x1, rot1 = RandRot(x)
x2, rot2 = RandRot(x)
x1’, x2’ = Cutout(x1), Cutout(x2)
z1, z2 = Encoder(x1’), Encoder(x2’)
rec1, rec2 = RecHead(z1), RecHead(z2)
contr1, contr2 = CnHead(z1), CnHead(z2)
r1, r2 = RotHead(z1), RotHead(z2)
rot, r = torch.cat(rot1, rot2), torch.cat(r1, r2)
rec, x = torch.cat(rec1, rec2), torch.cat(x1, x2)
loss = Linpaint(rec,x) + Lrot(r,rots) + Lcontrast(contr1,contr2)
loss.backward() # back-propagate

Regarding self-supervised pre-training time of Swin UNETR
encoder, our approach takes only approximately 6 GPU days.
We evaluate pre-training on the 5 collected public datasets
with totally 5,050 scans for training and validation, and set
maximum training iterations to 45K steps.

E. Pre-Training Algorithm Details

In this section, we illustrate the Swin UNETR pre-training
details. The Pytorch-like pseudo-code implementation is
shown in Algorithm S.1. The Swin UNETR is trained in
self-supervised learning paradigm, where we design masked
volume inpainting, rotation prediction and contrastive coding
as proxy tasks. The self-training aims at improving the quality
of representations learnt by large unlabeled data and propa-
gating to smaller fine-tuning dataset. To this end, we leverage
multiple transformations for input 3D data, which can exploit
inherent context by a mechanism akin to autoencoding and
similarity identification. In particular, given an input mini
batch data, the transform of random rotation is implemented
on each image in the mini batch iteratively. To simultaneously
utilize augmentation transformations for contrastive learning,
the random rotation of 0˝, 90˝, 180˝, 270˝ is applied twice on
the same input to generate randomly augmented image pairs
of the same image patch. Subsequently, the mini batch data
pairs are constructed with the cutout transforms. The drop size
of voxels are set to 30% of input sub-volumes. We randomly
generate masked ROIs inside image, until the total masked
voxels are larger than scheduled number of dropping voxels.
Unlike canonical pre-training rules of masked tokens in

BERT [19], our local transformations to the CT sub-volumes
are then arranged to neighbouring tokens. This scheme can
construct semantic targets across partitioned tokens, which
is critical in medical spatial context. By analogy to Models
Genesis [65], which is CNN-based model consisting expen-
sive convolutional, transposed convolution layers and skip
connection between encoder and decoder, our pre-training
approach is trained to reconstruct input sub-volumes from the
output tokens of the Swin Transformer. Overall, the intuition
of modeling inpainting, rotation prediction and contrastive
coding is to generalize better representations from aspects
of images context, geometry and similarity, respectively.
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