
Appendix

A. Optimization of CW

The CW L0 attack first searches for perturbations on all
pixels that can cause misclassification using the L2 norm. It
then uses a processing step external to the optimization to
remove the perturbations that are the least important after
each optimization epoch. The objective of optimization is
the following.

min
w

LCW = kx0 � xk22 + c · f(x0), (7)

where f(x0) = max
�
max{Z(x0)i : i 6= t}� Z(x0)t,�

�
,

(8)

and x0 = v � 1

2
tanh(w) + (1� v) � x. (9)

The first objective in LCW is to minimize the L2 distance
between the perturbed input x0 and the original input x.
The second objective f(x0) is for inducing misclassifica-
tion by enlarging the target label t’s logits value (denoted
by Z(·)) and reducing the largest logits of other labels as
shown in Equation 8. The parameter  controls the confi-
dence of the misclassification. Equation 9 explains how an
input x is perturbed. The perturbation is controlled by a
mask vector v similar to the mask in NC. Its value is either
0 or 1, with the former indicating the corresponding pixel
cannot be perturbed and the latter meaning that the pixel is
replaced with the perturbation value. Variable w is a vec-
tor of arbitrary values denoting the perturbations. Function
1
2 tanh(w) projects these values to [�0.5, 0.5]. Note that
in CW, each pixel value is normalized to [�0.5, 0.5]. To
reduce the number of perturbed pixels, CW leverages a pro-
cessing step external to the optimization after each epoch.
Specifically, let � = 1

2 tanh(w) be the perturbations and
g = rLCW be the gradient of objective function. It com-
putes the importance of the perturbation of a pixel i by
gi · �i. CW sets vi to 0 if the importance is smaller than
a threshold. The change of v is monotonic. The algorithm
can be easily adapted to generate backdoor: instead of op-
timizing w for one input, we optimize it for a set of inputs.

B. Optimization of Universal Adversarial Per-
turbation (UAP)

The existing UAP algorithm mainly produces perturba-
tions for untargeted attacks. Since backdoor attacks are

usually targeted, we extend the algorithm as follows.

min
�

LUAP =
1

N

NX

i=1

L̂
�
M(xi + �), yt

�
s.t. k�k1  ✏,

(10)

where L̂
�
M(xi + �), yt

�
= min{L(xi + �, yt),�}.

(11)

Variable � denotes the backdoor perturbation, bounded by
an L1 size ✏. Parameter � is a threshold for the loss of
individual samples so as to avoid the loss of a single sam-
ple dominating the whole objective and to achieve a higher
ASR [58]. Intuitively, the method aims to bound the max-
imum perturbation on a single pixel while minimizing the
adversarial loss. Such bound is needed. Otherwise with an
unbounded L1 distance, the optimization might completely
change the input image in order to achieve its goal. We do
not add a loss term to minimize the L1 distance because its
ASR is low to begin with. Our results in Appendix E and
F show that UAP cannot achieve high ASRs. Furthermore,
almost all the pixels on an input image are perturbed. This
makes its application in the physical world very difficult.
The second and third images in the first row in Figure 2 (see
Section 1) present the generated backdoors by UAP and its
reduced version, respectively. Observe that almost all the
pixels (50k ⇡ 224 ⇥ 224) are perturbed while the ASR is
only 2%. Reducing the number of perturbed pixels leads
to 0% ASR. Its performance on CIFAR-10 is better. The
green line in Figure 3 (see Section 3) shows that the ASR
for a UAP trigger can be as high as 0.6 (the right end of the
line). However, applying only the top 200 perturbations of
UAP backdoor has nearly zero ASR, indicating most per-
turbations in the backdoor are important.

C. Detailed Experiment Setup
CIFAR-10 [27] is an object recognition dataset for a 10-
class classification task, which contains 60,000 images. We
split the whole dataset into three sets: 48,000 images for
training, 2,000 for validation and 10,000 for testing. Two
different models are utilized for this dataset: ResNet20 [20],
Network in Network (NiN) [36].
SVHN (Street View House Numbers) [47] dataset contains
house number digits extracted from Google Street View im-
ages, which consist of 73,257 training images and 26,032
test images. We further split the original training set into
67,257 samples for training and 6,000 samples for valida-
tion. We employ two models, NiN [36] and ResNet32 [20].
LISA [45] is a U.S. traffic sign dataset that contains 47 dif-
ferent road signs. However, the number of samples of dif-
ferent classes is not well-balanced, with some classes hav-
ing very few images. We use the same setting as in an exist-
ing work [11] by choosing 18 most common classes based

(a) CIFAR-10 (b) SVHN

Figure 8. Comparison of CW and ours on the generation efficiency
for all class pairs on CIFAR-10 and SVHN datasets. The x-axis
denotes the time in seconds and the y-axis shows the size of back-
doors during the trigger generation.

on the number of training examples, and split the dataset
into 5,635 training samples, 704 validation samples and 704
test samples. We use two model structures for this dataset:
A CNN model [11] that consists of three convolutional lay-
ers and one fully-connected layer, and a ResNet20 [20].
ImageNet [54] dataset is a large set for image classifi-
cation with 1,000 labels, which contains 1,281,167 train-
ing images and 50,000 validation images. We use a
ResNet50 [20] model downloaded from a widely-used
model repository [25].

For backdoor scanning, we randomly select 100 models
(half clean and half poisoned) in each round from rounds
2-4 of the TrojAI competition [50]. We exclude the round
1 models due to its simple poisoning settings. In total, we
have 150 clean models and 150 poisoned models. The task
of backdoor scanning is to determine whether a given model
is poisoned or not. TrojAI models utilize 16 different struc-
tures such as DenseNet121, InceptionV3, MobileNetV2,
etc. Each model is trained to classify synthetic traffic signs
to between 5 and 45 classes. Input images are created by
compositing a foreground object, e.g., a synthetic traffic
sign, with a random background image from five different
datasets in three categories from the KITTI dataset [14], the
Cityscapes dataset [9] and the Swedish Roads dataset [29].
The organizer provides 2-50 clean images per class for each
model in different rounds. Poisoned models are trojaned
with various kinds of backdoors, including universal, label-
specific and position-specific. We consider polygon trig-
gers in this paper which are pixel patterns (e.g., polygons
with solid color). Random transformations, such as shifting,
titling, lighting, blurring, and weather effects, are applied
during training to improve dataset diversity. Also, adversar-
ial training with PGD (Projected Gradient Descent) [44] and
FBF (Fast is Better than Free) [70] is leveraged to improve
model quality in rounds 3-4.

D. Comparison of Time Cost with CW
We compare the time cost of CW and ours in Figure 8.

The x-axis denotes the time in seconds and the y-axis de-

Figure 9. Comparison of UAP and ours on the ASR for all class
pairs on the CIFAR-10 dataset

notes the trigger size. We record the generation for all
class pairs from CIFAR-10 and SVHN. Observe that CW
spends a large amount of time finding a feasible solution
at the beginning (around 120 seconds). After that, it aims
to reduce the number of perturbed pixels using an external
step as discussed in Section 3.2. This leads to the staircase
phenomenon in Figure 8 as CW tries to find a feasible so-
lution with the given set of pixels allowed for perturbing.
Our method converges significantly faster than CW. On av-
erage, ours is 10.88 times faster on CIFAR-10 and 11.53
times faster on SVHN.

E. Comparison with UAP on CIFAR-10
UAP is based on L1 and hence not directly compara-

ble with our method. We follow the same procedure as be-
fore (see comparison with NC in the evaluation section):
aligning by trigger sizes and then comparing ASRs, and
aligning by ASRs and then comparing trigger sizes. The
left heat map in Figure 9 shows the results when aligning
trigger sizes. The average ASR of reduced UAP triggers
is only 0.96%, whereas the original triggers have 68.21%
ASR. It is clear that triggers generated by UAP are inef-
fective with a small number of perturbed pixels like ours.
The left heat map in Figure 10b shows the results of align-
ing ASRs. Observe that the UAP triggers perturb all pixels,
whereas ours are two orders of magnitude smaller. This is
expected as UAP is an L1 method. Triggers generated by
such a method can hardly be used in physical attack.

F. Evaluation on SVHN
Comparison with CW Optimization. In this experiment,
we use CW and our method to generate natural triggers for
all the class pairs for a clean NiN model on SVHN. Fig-
ure 12 shows the comparison. Each cell in a heat map de-
notes the result for a natural backdoor flipping all the test
samples from a victim class (row) to a target class (col-
umn). Figure 12a and Figure 12b show the trigger sizes and
the ASRs for CW (the left heat map) and ours (the middle

(a) Comparison with NC

(b) Comparison with UAP

Figure 10. Comparison of the number of perturbed pixels with the same ASR for all class pairs on the CIFAR-10 dataset. The first two heat
maps in each subfigure illustrate the results for NC/UAP and ours, respectively. The last heat map shows how much larger of generated
backdoors by NC/UAP compared to ours.

heat map), respectively. The right heat map in Figure 12a
shows how much larger the CW triggers are compared to
ours. Observe that there are a few class pairs where CW and
ours have the same trigger size, such as 3 ! 0 and 5 ! 2.
However, for other pairs, CW has a significantly larger trig-
ger size than ours. For instance, for pair 2 ! 0, the trigger
by CW is 110% larger than ours. Even with a much larger
trigger, CW however still has lower ASR (59% vs 83% for
2 ! 0). This is because CW uses an external procedure to
reduce the number of perturbed pixels (removing unimpor-
tant pixels based on gi · �i as discussed in Section 3.2).

Comparison with NC. NC tends to generate triggers with
a large number of small perturbations. The generated trig-
gers hence cannot be easily applied in physical attacks. We
conduct two experiments: (1) align the number of perturbed
pixels of the NC triggers and our triggers and then compare
the corresponding ASRs; (2) align the ASRs and compare
the trigger sizes. For the first experiment, we use the sizes
of our triggers as the reference, and align the triggers by
NC by gradually removing their smallest perturbations un-
til they have the same sizes as ours. We then compare the
ASRs of our triggers and the reduced NC triggers. Figure 13
presents the results. Observe that for most class pairs, the
reduced NC triggers have reasonable ASRs with an average

of 75.87%, degraded from 76.55% without reduction. The
results on SVHN are better than those on CIFAR-10 and
ImageNet. Because SVHN is a dataset for digital number
(from 0 to 9) recognition, which is a simpler task than objec-
tion recognition in CIFRA-10 and ImageNet. Optimization
methods like NC can generate a digit shape (e.g., 1) with
a few pixels change. This also explains the similar ASRs
of triggers with and without reduction. Our triggers have
higher ASRs than NC’s for all class pairs, with the largest
difference of 21% for 2 ! 8 and 8 ! 2. On average, ours
have 83.18% ASR, even higher than the original NC trig-
gers without size reduction. In the second experiment, we
use NC’s ASR as the reference and then gradually remove
the smallest perturbations in our triggers until their ASRs
drop to the same level as NC’s and then compare the sizes.
Figure 14a presents the results. Observe that NC has one or-
der of magnitude larger trigger sizes than ours for all class
pairs (except for 6 ! 5 and 3 ! 8). Since the reduced NC
triggers have similar ASRs as the non-reduced ones, many
pixel perturbations by NC are redundant and can be pruned
for SVHN. After alignment, our generated triggers perturb
fewer pixels.

Comparison with UAP. UAP is based on L1 and hence
not directly comparable either. We follow the same proce-

(a) Snowbird (b) Robin

(c) Black grouse (d) Kangaroo

Figure 11. Evaluation of NC and our triggers under transformations on ImageNet. The victim class is turtle and the target classes are in
the caption of each subfigure.

dure as before: aligning by trigger sizes and then comparing
ASRs, and aligning by ASRs and then comparing trigger
sizes. The middle heat map in Figure 13 shows the results
when aligning trigger sizes. The average ASR of reduced
UAP triggers is only 0.51%, whereas the original triggers
have 18.76% ASR, which is also very low. It is clear that
triggers generated by UAP are completely ineffective with
a small number of perturbed pixels like ours. The left heat
map in Figure 14b shows the results of aligning ASRs. Ob-
serve that the UAP triggers perturb all pixels, whereas ours
are two orders of magnitude smaller.

G. Comparison with NC Variants
NC variants are based on NC and hence limited by the

performance of NC. We test on a NC variant, ABS [38],
for generating a trigger for pair plane!car on a ResNet20
model on CIFAR-10. The generated trigger by ABS has 84
perturbed pixels, which is twice larger than ours (38). The
ASR on the test set is 38% by ABS and 78% by ours. If
we reduce the number of perturbed pixels by ABS to match
the size of our trigger, it has only 16% ASR. This empiri-
cally demonstrates that NC variants have the same limita-
tion as NC. Besides, as those variants are built upon NC,
they can be modified to use our method as the core opti-
mization, which can boost their performance.

H. Evaluation on Desktop
We conduct an experiment on a desktop equipped with

one Intel i7-8700 Processor, 16 GB of RAM, and a single
NVIDIA GeForce GTX 1070 Ti GPU, which is a common
affordable desktop machine. We use the case shown in Fig-

Table 4. Experimental comparison on different machines

Method Machine Time #Pixels ASR

UAP Server 22.69 50173 2.00%
Desktop 21.12 50170 2.00%

NC Server 9.02 26583 28.00%
Desktop 10.62 17516 20.00%

Ours Server 4.27 822 70.00%
Desktop 5.40 818 70.00%

ure 2 in Section 1 and the results are shown in Table 4. Ob-
serve that the runtime for different methods on the desktop
is similar to that on the server with minor differences. Our
method still has the lowest time cost, and is around 2 times
faster than NC and 4 times faster than UAP. Our method can
be easily deployed on machines with limited resources.

I. Robustness of Generated Triggers
We study the robustness of generated triggers under vari-

ous image transformations. As the triggers by CW and UAP
have very low ASRs, we hence only consider NC in this
study. For some target classes, NC still has a low ASR.
We then increase the strength of the adversary by utilizing
100 images for both NC and ours during trigger generation
(50 images for the study in Section 5.3). This yields bet-
ter test ASRs in general. We test on two types of transfor-
mations with different parameters: rescaling and rotation.
Figure 11 presents the results for a source class turtle, with
the target classes in individual subfigures. For each target
class, we show the results under rescaling transformation
on the left and under rotation on the right. The x-axis de-

Table 5. Comparison of different methods augmented with transformations during generation on a victim class turtle from the ImageNet
dataset. The first column shows the target classes. The second column shows backdoor generation methods. The third column is the ASR
of original triggers. The 4th-7th columns show the ASR under different rescaling transformations. The 8th-12th columns show the ASR
under different rotation transformations. The last column shows the average ASR.

Target Method Normal Rescaling Rotation Average
98% 96% 88% 80% 1� 2� 3� 4� 5�

Snowbird
NC 80.00% 74.00% 46.00% 0.00% 0.00% 82.00% 46.00% 8.00% 8.00% 2.00% 34.60%

NC Prune 64.00% 44.00% 16.00% 0.00% 0.00% 50.00% 18.00% 0.00% 0.00% 0.00% 14.22%
Ours 78.00% 66.00% 64.00% 16.00% 6.00% 74.00% 26.00% 18.00% 4.00% 4.00% 35.60%

Robin
NC 80.00% 70.00% 56.00% 16.00% 12.00% 68.00% 50.00% 20.00% 18.00% 10.00% 40.00%

NC Prune 42.00% 38.00% 22.00% 6.00% 4.00% 32.00% 18.00% 4.00% 6.00% 4.00% 17.60%
Ours 84.00% 78.00% 70.00% 46.00% 32.00% 80.00% 46.00% 40.00% 20.00% 12.00% 50.80%

Grouse
NC 82.00% 70.00% 48.00% 0.00% 0.00% 70.00% 6.00% 2.00% 0.00% 0.00% 27.80%

NC Prune 76.00% 68.00% 42.00% 0.00% 0.00% 54.00% 4.00% 2.00% 0.00% 0.00% 18.89%
Ours 82.00% 70.00% 68.00% 30.00% 28.00% 78.00% 42.00% 28.00% 24.00% 24.00% 47.40%

Kangaroo
NC 80.00% 72.00% 52.00% 0.00% 0.00% 74.00% 38.00% 34.00% 28.00% 20.00% 39.80%

NC Prune 66.00% 46.00% 28.00% 0.00% 0.00% 52.00% 24.00% 16.00% 18.00% 8.00% 21.33%
Ours 78.00% 70.00% 60.00% 50.00% 34.00% 76.00% 54.00% 52.00% 48.00% 40.00% 56.20%

notes the transformation strengths with the first one without
any transformations, and the y-axis denotes the ASR. As we
discussed in Section 5.3, NC has a much larger number of
perturbed pixels than ours. Hence besides the original NC
triggers, we also reduce the NC triggers to match our num-
bers of perturbed pixels and study their robustness as well.
They are denoted as NC Prune in the figure. Observe that
most of NC triggers become ineffective after 96% rescaling
or 2� rotation (near 0% ASR). NC Prune has a lower ASR,
even without transformations. For the target kangaroo, NC
Prune has 28% lower ASR compared to NC, indicting that
NC does require a large number of perturbed pixels to be
effective, which is not so desirable for physical attacks. Our
method has a consistently higher ASR than NC. For target
kangaroo, our trigger has around 40% ASR with most of the
transformations. We further study the robustness of triggers
by applying transformations during the trigger generation.
The observations are similar (see the following section).

J. Augmentation during Backdoor Generation
In this section, we study the robustness of triggers by

applying transformations during trigger generation. Specifi-
cally, for input samples stamped with triggers, we randomly
rescale 1% and rotate 1� for those samples. Using larger
transformations would increase the trigger size, which is
not desired for physical attacks. Table 5 shows the ASR
results for augmented triggers on a victim class turtle from
the ImageNet dataset. The first two columns show the target
classes and backdoor generation methods. The third column
is the ASR of original triggers. The 4th-7th columns show
the ASR under different rescaling transformations. The 8th-
12th columns show the ASR under different rotation trans-
formations. The last column shows the average ASR. As

NC has a much larger number of perturbed pixels than ours.
Hence besides the original NC triggers, we also reduce the
NC triggers to match our trigger sizes and study their ro-
bustness as well, which is denoted as NC Prune in the table.
Observe that the ASRs of both NC and ours are increased on
small scale transformations (98%-96% rescaling and 1�-2�
rotation) compared to the results in Figure 11 in the previ-
ous section. However, for larger transformations, NC still
has near 0% ASR on most cases. NC Prune has a low ASR
even with the augmentation during the trigger generation.
On average, it has only 18.01% ASR. Backdoors gener-
ated by our method can maintain a reasonable ASR. For
instance, under the largest rescaling transformation (80%),
our triggers still have around 30% ASR on the bottom three
target classes. On average, our method has 47.50% ASR,
11.95% higher than NC (35.55%) and 29.49% higher than
NC Prune (18.01%), indicating our generated triggers are
more suitable for physical attacks.

K. Ablation Study
Our method introduces two components for approximat-

ing the number of perturbed pixels: the tanh loss and
the two variables bp and bn for the positive and negative
perturbations. We study individual components to under-
stand their effects. In particular, we consider four settings,
namely, (1) excluding the tanh loss; (2) replacing the two
variables with a single variable for the positive perturba-
tion; (3) replacing the two variables with a single variable
for both positive and negative perturbations; (4) excluding
both the tanh loss and the two variables. The results for
pair plane!dog from CIFAR-10 on a ResNet20 model with
10 random runs are shown in Table 6. The number of per-
turbed pixels (#Pixels) is presented in the second column

Table 6. Ablation study on effects of different components.
The results are collected from 10 random runs for the class pair
plane!dog for a ResNet20 model on the CIFAR-10 dataset.

Method #Pixels ASR

Ours 38.70± 5.10 80.07±3.96%
- tanh loss 46.40±10.07 79.73±2.11%
- two variables (positive) 84.50±12.24 72.64±3.82%
- two variables 1024.00± 0.00 90.99±4.40%
- tanh loss & two variables 1023.10± 0.88 88.39±4.85%

and the ASR in the third column. Observe that without us-
ing the tanh loss, the trigger size increases by 20% from
38.70 to 46.40 on average. The standard deviation is twice
of ours (10.07 vs. 5.10). Replacing the two variables with
a single positive variable doubles the size of the generated
trigger (from 38.70 to 84.50), and the ASR also drops (from
80.07% to 72.64%). Using a single variable for both pos-
itive and negative perturbations cannot reduce the number
of perturbed pixels (the last two rows). As discussed in
Section 4, there is a steep slope where the perturbation is
0 when using such a variable. It is unlikely for the opti-
mization to stabilize at the 0 point. Hence, almost all the
pixels will be perturbed during the trigger generation. This
indicates the necessity of separating the positive and nega-
tive perturbations during the optimization. Using the tanh
loss can further reduce the trigger size without sacrificing
the ASR.

L. Applications
In this section, we evaluate our method in two applica-

tions including model hardening and backdoor scanning.

L.1. Model Hardening
In the introduction section, we have shown that a small

backdoor generated by our method can flip the majority
of samples of turtle to kangaroo in the ImageNet dataset.
This is a critical security threat. We hence utilize generated
triggers to harden the model by training on normal inputs
stamped with triggers. After hardening, an adversary is sup-
posed to produce a large and visible backdoor, which can be
easily detectable by automated tools or human inspectors.
CW is extremely expensive in trigger generation (as shown
in Section 5 and Appendix D), which is not computationally
feasible for model hardening that requires a large number
of triggers generated on-the-fly during training. We hence
only consider UAP, NC and ours for model hardening. In
the original paper [65], NC generates universal backdoors
for all classes beforehand, and then hardens the model us-
ing this set of backdoors by stamping on training inputs. We
further improve the hardening process by generating univer-
sal backdoors on-the-fly, similar to adversarial training. We
call it iterative NC. We use the same procedure for UAP and

ours to harden models. The L1 bound for UAP training is
determined according to the normal accuracy drop. We use
L1 bound of 4/255 for CIFAR-10, 0.05 for SVHN, and
0.03 for LISA.

We use the mask size by NC and the number of perturbed
pixels by our method to measure the class distance from a
victim class to a target class. The goal of model harden-
ing is hence to enlarge the class distance for all pairs. We
use the relative improvement of pairwise class distance as
the metric. That is, we compute the improvement percent-
age for every class pair and obtain the average, defined as
follows.

1

n⇥ (n� 1)

nX

i=1

nX

j=1,j 6=i

d̂i!j � di!j

di!j
, (12)

where n is the number of classes; di!j and d̂i!j are the
class distances from i to j for the original model and the
hardened model, respectively. We randomly select 100 sam-
ples from the validation set of class i and apply NC/ours for
1,000 epochs to generate a backdoor that can flip 90% of
those samples to the target class j. As a backdoor is ran-
domly initialized during generation, to avoid the bias from
randomness, we run the generation on the same pair for 3
times and use the smallest backdoor size as the class dis-
tance. We show the average relative improvement along
with the average class distance in the following results.

Table 7 shows the results for model hardening on
CIFAR-10, SVHN and LISA datasets. The first three
columns denote the dataset, model structure and training
methods, respectively. The 4th column shows the model
accuracy on the test set. The 5th column presents the train-
ing time in minutes. The 6th and 8th columns show the
average class distance measured by NC and ours, respec-
tively. The 7th and 9th columns show the relative improve-
ment of class distance measured using Equation 12. UAP
has the lowest improvement on distances by both NC and
ours on CIFAR-10 and SVHN, except for the ResNet20
model on CIFAR-10 measured by NC. For cases such as
ResNet32 on SVHN, UAP instead reduces the class dis-
tance measured by both NC and ours. NC can achieve a
reasonable improvement from 4.58% to 39.10% measured
by NC and from 3.96% to 49.56% measured by ours. The
iterative version of NC further improves the class distance.
It has an average of 68.61% improvement on the distance
measured by NC and 89.70% by ours. Using our method
for hardening produces the largest class distance improve-
ment on both metrics (73.02% by NC and 106.37% by ours)
on average. Specifically, models hardened by our method
have much more improvements on the distance measured
by ours, and are also better when measured by NC. This
demonstrates that our backdoor generation method is better
than NC in exposing model vulnerabilities. Models hard-

Table 7. Comparison of different methods on model hardening. First three columns denote different datasets (D), models (M) and training
methods for the evaluation. The fourth column denotes model accuracy on the test set. The fifth column shows the training time in minutes.
The sixth and the eighth columns show the average class distance across all class pairs measured by NC and ours, respectively. The seventh
and the ninth columns denote the improvement of pairwise class distance (measured by NC and ours) by different techniques compared to
that of original models (Natural).

D M Method Accuracy Time (m) AdvNC IncreaseNC AdvOurs IncreaseOurs

C
IF

A
R

-1
0 R
es

N
et

20
Natural 91.52% 56.77 53.49 - 43.91 -

UAP 90.04% 243.11 96.00 81.57% 61.62 42.91%
NC 90.83% 84.88 72.56 37.84% 62.77 49.56%

Iterative NC 90.57% 65.00 93.54 78.16% 89.24 112.12%
Ours 90.32% 64.11 95.17 79.21% 100.72 139.77%

N
iN

Natural 88.09% 68.30 60.67 - 38.17 -
UAP 86.61% 196.67 57.56 -5.22% 36.92 -2.05%

NC 86.64% 40.35 75.49 26.49% 52.20 42.89%
Iterative NC 86.76% 33.90 90.69 54.09% 66.69 87.75%

Ours 86.32% 28.46 93.77 59.08% 74.31 108.59%

SV
H

N

N
iN

Natural 95.61% 10.50 64.63 - 37.17 -
UAP 94.63% 45.47 69.31 6.99% 41.56 12.37%

NC 94.89% 24.72 82.90 32.19% 53.16 48.96%
Iterative NC 95.03% 53.40 107.15 65.97% 67.53 88.99%

Ours 94.86% 42.71 108.43 68.47% 71.18 99.86%

R
es

N
et

32

Natural 95.15% 26.70 55.11 - 32.83 -
UAP 93.16% 228.95 49.40 -8.86% 23.69 -27.08%

NC 93.45% 31.51 75.77 39.10% 45.57 39.69%
Iterative NC 94.60% 109.30 120.20 113.92% 76.20 128.26%

Ours 94.18% 97.55 122.79 121.07% 83.24 152.02%

LI
SA

C
N

N

Natural 97.30% 0.15 68.47 - 32.92 -
UAP 95.60% 1.79 65.90 -1.23% 32.31 -0.43%

NC 96.88% 8.27 71.69 4.58% 35.09 6.70%
Iterative NC 96.45% 11.34 101.48 46.13% 53.38 60.36%

Ours 96.02% 10.41 107.34 54.34% 56.83 70.11%

R
es

N
et

20

Natural 98.86% 1.70 72.05 - 43.62 -
UAP 96.16% 6.33 97.11 36.32% 56.77 30.77%

NC 99.29% 34.34 75.51 4.67% 45.21 3.96%
Iterative NC 98.30% 25.37 113.35 53.38% 72.18 60.74%

Ours 98.30% 27.03 115.63 55.96% 75.58 67.86%

ened by our method are more resilient to existing natural
backdoor attacks.

L.2. Backdoor Scanning
Backdoor scanning aims to scan a given model to de-

cide if it contains a backdoor, without assuming any inputs
stamped with the backdoor pattern [19,21,22,26,52,63,68,
72,76]. This is one of the popular defense solutions against
backdoor attack. Many existing backdoor scanners are built
on top of NC’s trigger generation method. For instance, a
state-of-the-art approach K-arm [59] uses NC as the base
optimization method to generation backdoor. It iteratively
and stochastically selects the most promising labels (poten-
tially poisoned) for optimization with the guidance of an
objective function. It achieves the top performance on the
TrojAI competition organized by IARPA [50], outperform-
ing NC [65], ABS [38], TABOR [18], DLTND [68], and
other existing methods. To evaluate the performance of our
backdoor generation method in downstream applications,

we replace the NC method with ours in the K-arm scanner.
We conduct the experiment on 300 pre-trained models from
the TrojAI competition. Detailed setup can be found in Ap-
pendix C. For a fair comparison, we use the same setting in
K-arm (including the pre-selection and the scheduler) and
only replace the optimization component. The compari-
son results are shown in Table 8. We also include the re-
sults of a few other baselines from the K-arm paper [59].
The first column denotes detection methods. The follow-
ing six columns present detection accuracy and time (per
model in seconds) on different rounds. Observe that using
our method can further boost the performance of K-arm for
1% on round 3 and 2% on round 4, surpassing the state-of-
the-art results. Note that since the original K-arm already
has high accuracy, the room to improve is small. The time
cost is comparable using our method. We also compare our
method with another detection approach GangSweep [79]
on the TrojAI round 3. We randomly select 20 benign mod-
els and 20 poisoned models to conduct the experiment. The

Table 8. Scanning backdoored models on the TrojAI dataset

Method Round 2 Round 3 Round 4

Acc. Time(s) Acc. Time(s) Acc. Time(s)

ABS 62% 1527 71% 1435 79% 525
TABOR 55% > 32000 60% > 30000 60% > 35000
DLTND 60% > 26000 65% > 29000 65% > 31000
K-arm 85% 210 91% 183 87% 292
Ours 85% 231 92% 198 89% 320

detection accuracy of GangSweep is only 57.50%, much
lower than ours (92%).

We further evaluate our method on detecting three ad-
vanced backdoor attacks, namely, WaNet [48], invisible
backdoor [32], and blind Backdoor [2].

WaNet [48] uses distortion transformation (e.g., distort-
ing straight lines) as the backdoor. At the pixel level, the
backdoor varies for different inputs. We conduct an ex-
periment on backdoored models downloaded from the of-
ficial repository [48], which are trained on MNIST, CIFAR-
10, GTSRB and CelebA, respectively. We use NC and our
method to reverse engineer triggers for these models. We
use the anomaly index to analyze generated triggers for
backdoor detection as in the original NC paper [65]. A
large index means that the generated trigger for a label is
much smaller than those for other labels. A model with
an anomaly index larger than 2 is considered backdoored
(i.e., the default setting). Table 3 in Section 5.5 shows the
anomaly indices for different models using NC and ours.
We can see that NC cannot detect any of the evaluated mod-
els (consistent with the results reported in [48]), whereas
our method can detect all the backdoored models (as we can
generate a much smaller trigger for the target). Our inspec-
tion shows that although the injected triggers are pervasive,
the models pick up low level features such as curly lines
during poisoning. NC generates large triggers for the tar-
get class that are not distinguishable from those of benign
classes, whereas our triggers are much smaller.

The invisible backdoor [32] uses a uniform perturbation
with the smallest L2 as the backdoor, which is hence perva-
sive. Since the authors did not provide the implementation
or backdoored models in the paper, we have contacted the
authors but haven’t heard from them yet. We also tried to
re-implement their attack based on the paper. With limited
details of hyper parameters, the backdoor we got is larger
than what was reported in the paper. We hence tested on a
backdoored model on CIFAR-10 with the smallest L2 back-
door that we can get. The normal test accuracy is 90.96%
and the ASR is 99.63%. We then use NC and our method to
evaluate this model. The anomaly index is 0.77 by NC and
2.28 by ours. The result shows that our method can detect
the model as backdoored, whereas NC cannot.

The blind backdoor attack [2] can evade the detection

of NC. We study our method against such a strong attack.
We use the official repository from the original paper [2]
to conduct an experiment. We use the MNIST dataset and
replace the optimization of NC with ours in the robust train-
ing. After training, we run our method on the trained model
to generate triggers for all classes, and use anomaly detec-
tion to see whether the model is backdoored. For the above
robustly trained model, our method has an anomaly index of
3.37, which can detect the model as backdoored. It indicates
that the smoother loss function in our technique allows find-
ing the true trigger despite the robust training. We further
demonstrate that when applying our method on the robust
model trained with NC (the same in [2]), we can also detect
the model as backdoored with an anomaly index of 3.04.

Table 9. Comparison of different methods on more class pairs from ImageNet. The first column shows the victim!target class pairs. The
second column shows the methods. The third column is the time cost (in minutes) and the fourth column the number of perturbed pixels
(#Pixels). The last column shows ASR on the samples from the validation set.

Pair Method Time (min) #Pixels ASR

Bullfrog!Robin
UAP 10.28 50175 0.00%
NC 9.20 26016 28.00%

Ours 3.69 489 50.00%

Gorilla!Tench
UAP 12.37 50173 0.00%
NC 9.19 26803 10.00%

Ours 3.78 587 50.00%

Gorilla!Goldfish
UAP 12.63 50174 0.00%
NC 9.19 26532 50.00%

Ours 4.20 626 62.00%

Gorilla!Hammerhead
UAP 12.79 50173 0.00%
NC 9.11 26854 30.00%

Ours 4.54 643 54.00%

Treefrog!Goldfish
UAP 13.21 50175 44.00%
NC 9.20 26714 48.00%

Ours 4.04 551 58.00%

Pair Method Time (min) #Pixels ASR

Treefrog!Tiger Shark
UAP 12.70 50175 14.00%
NC 9.21 27383 28.00%

Ours 4.12 967 58.00%

Peacock!Ostrich
UAP 13.04 50175 0.00%
NC 9.47 29800 12.00%

Ours 4.29 1447 54.00%

Peacock!Bulbul
UAP 12.70 50171 0.00%
NC 9.37 28882 50.00%

Ours 5.02 1512 62.00%

Chihuahua!Partridge
UAP 10.45 50175 0.00%
NC 9.19 26228 36.00%

Ours 3.77 666 54.00%

Chihuahua!Isopod
UAP 10.35 50173 8.00%
NC 9.27 26397 26.00%

Ours 3.69 626 56.00%

(a) #Pixels of generated triggers. The last heat map shows how much larger CW triggers are.

(b) ASRs of generated backdoors. The last heat map shows how much higher our ASRs are.

Figure 12. Comparison of CW and ours for all class pairs on SVHN. Each cell denotes the result of a generated trigger from a victim class
(row) to a target class (column). The first two heat maps in each subfigure illustrate the results for CW and ours. The last shows the relative
difference.

Figure 13. Comparison of NC, UAP and ours on the ASR for all class pairs on the SVHN dataset

(a) Comparison with NC

(b) Comparison with UAP

Figure 14. Comparison of the number of perturbed pixels with the same ASR for all class pairs on the SVHN dataset. The first two heat
maps in each subfigure illustrate the results for NC/UAP and ours, respectively. The last heat map shows how much larger of generated
backdoors by NC/UAP compared to ours.

	. Introduction
	. Related Work
	. Existing Optimization Methods for Backdoor Trigger Generation and Their Limitations
	. Optimization of Neural Cleanse (NC)
	. Optimization of CW
	. Optimization of Universal Adversarial Perturbation (UAP)

	. Our Method
	. Evaluation
	. Experiment Setup
	. Evaluation on CIFAR-10
	. Evaluation on ImageNet
	. Model Hardening
	. Backdoor Scanning

	. Conclusion
	. Optimization of CW
	. Optimization of Universal Adversarial Perturbation (UAP)
	. Detailed Experiment Setup
	. Comparison of Time Cost with CW
	. Comparison with UAP on CIFAR-10
	. Evaluation on SVHN
	. Comparison with NC Variants
	. Evaluation on Desktop
	. Robustness of Generated Triggers
	. Augmentation during Backdoor Generation
	. Ablation Study
	. Applications
	. Model Hardening
	. Backdoor Scanning

