
A. Gradient Analysis

A.1. Contrastive Learning Methods

Derivation of the gradient for MoCo [17]. For simplicity,

we denote l(uo
1) as the InfoNCE loss for the sample uo

1:
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where sv =
exp (cos(uo

1,v
m)/τ)∑

ym∈Vbank
exp (cos(uo

1,y
m)/τ) .

Denote L as the averaged l(·) over a batch of N samples,

its gradient w.r.t uo
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Algorithm 1 Pseudocode of MoCo in PyTorch style.
# u1, u2: normalized representations for two augmented

views of shape [N, C]
# V_bank: the memory bank of shape [K, C]
# tau: the temperature coefficient

# positive term
loss_pos = -(u1*u2.detach()).sum(-1) # [N, 1]
# negative term
weight = softmax(u1@V_bank.T/tau, dim=-1) # [N, K]
loss_neg = (weight@V_bank)*v1.sum(-1) # [N, 1]
# MoCo
loss = 1/tau * (loss_pos + loss_neg).mean()

Derivation of the gradient for SimCLR [6]. For SimCLR,

the InfoNCE loss l(uo
1) should be modified as

l(uo
1) = − log
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Note that because the target branch is not detached from
back-propagation, uo

1 can receive gradients from l(us
2) and

l(vs). Accordingly, the gradient can be derived as
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where tv =
exp (cos(vs,uo

1)/τ)∑
ys∈Vbatch\vs exp (cos(vs,ys)/τ) . If we stop the

gradient from l(us
2) and l(vs), Eq.(20) will reduce to
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which shares a similar structure with that of MoCo. We

demonstrate empirically that this simplification does no

harm to the performance as shown in Table 6.

Algorithm 2 Pseudocode of Simplified SimCLR in Py-

Torch style.
# u1, u2: normalized representations for two augmented

views of shape [N, C]
# tau: the temperature coefficient

# positive term
loss_pos = -(u1*u2.detach()).sum(-1) # [N, 1]
# negative term
weight = softmax(u1@u2.T/tau, dim=-1) # [N, N]
loss_neg = (weight@u2).detach()*u1.sum(-1) # [N, 1]
# simplified SimCLR
loss = 1/tau * (loss_pos + loss_neg).mean()

A.2. Asymmtric Network Methods

Derivation of the gradient for DirectPred [28]. Direct-

Pred takes the negative cosine similarity loss between target

sample and projected online sample:
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T , Λh = Λ
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where U and ΛF are the eigenvectors and eigenvalues of

F =
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ovoT , respectively. ϵ is a hyperparameter

to boost small eigenvalues.
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Note that
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Substituting Eq.(25) into Eq.(24) leads to
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terms that are scaled by λ̃, we plot the value of their magni-
tude and the similarity of the first two terms in Figure 3(a).
It’s shown that the first two terms have highly similar di-
rection so they are expected to have similar effect on the

training. We have also verified that removing the F 1/2 term
will not cause performance drop (see Table 6). Thus, the
gradient can be simplified into
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where λ =
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When uo
1 is ℓ2 normalized, we can further neglect the

ϵ2λ2
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1 is 0. Hence, we simplify the gradient as

∂L

∂uo
1

≈
1

||Whuo
1||2N

(

−WT
h ut

2 + λFuo
1

)

=
1

||Whuo
1||2N

(

−WT
h ut

2 + λ
∑

vo∈V∞

(ρvu
o
1
T vo)vo

)

.

(28)

Note that λ is a dynamic balance factor, but we find that its

value tends to be quite stable (see Figure 3(b)), so it can also

be substiuted by a constant scalar.

Method SimCLR [6] DirectPred [28]

Gradient Eq.(20) Eq.(21) Eq.(26) Eq.(27)

Linear Eval 67.5 67.6 70.2 70.2

Table 6. Simplification for the gradient of SimCLR and Direct-

Pred. We use the 100-epoch pre-training and lineal evaluation

protocol described in Appendix B.

Algorithm 3 Pseudocode of Asymetric Networks.
# u1, u2: normalized representations for two augmented

views of shape [N, C]
# F: the moving average of correlation matrix
# rho: the moving average coefficient
# eps: hyperparameter to boost small eigenvalues

# accumulate F
tmp_F = ((u1.T@u1 + u2.T@u2) / (2*N)).detach()
F = rho*F + (1-rho)*tmp_F # update moving average

# calculate Wh
U, lambda_F, V = torch.svd(F)
lambda_h = torch.sqrt(lambda_F) + eps*lambda_F.max()
Wh = U@(torch.diag(lambda_h)@V) # [C, C]

# positive term
loss_pos = -(u1*(u2@Wh).detach()).sum(-1) # [N, 1]
# negative term
loss_neg = (u1*(u1@F).detach()).sum(-1) # [N, 1]

weight = 1/torch.linalg.norm(u1@Wh, dim=-1)
loss = (weight*(loss_pos + lambda * loss_neg)).mean()
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Figure 3. Justifications for simplifications.

A.3. Feature Decorrelation Methods

Derivation of the gradient for Barlow Twins [34]. Barlow

Twins forces the cross-correlation matrix to be close to the

identity matrix via the following loss function:

L =

C∑

i=1

(Wii − 1)2 + λ

C∑

i=1

∑

j ̸=i

W 2
ij , (29)
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Combining Eq.(30) and Eq.(31) together, we get:
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where A = I − (1− λ)Wdiag. Here (Wdiag)ij = δijWij is

the diagonal matrix of W , where δij is the Kronecker delta.

Algorithm 4 Pseudocode of Barlow Twins in PyTorch style.
# u1, u2: representations for two augmented views of

shape [N, C]
# lambda: the moving average coefficient

# correlation matrix
W_cor = u1.T@u2 / N # [C, C]
# positive term
pos = (1 - (1-lambda)*torch.diag(W_cor)) * u2
loss_pos = -(u1 * pos.detach()).sum(-1) # [N, 1]
# negative term
weight = u2@u2.T / N
loss_neg = ((weight@u1).detach() * u1).sum(-1)
# Barlow Twins
loss = 2 * (loss_pos + lambda * loss_neg).mean()

Derivation of the gradient for VICReg [1]. The loss func-

tion of VICReg consists of three componets:
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Algorithm 5 Pseudocode of Simplified VICReg in PyTorch

style.
# u1, u2: representations for two augmented views of

shape [N, C]
# lambda: the moving average coefficient

# positive term
loss_pos = -(u1 * u2.detach()).sum(-1) # [N, 1]
# negative term
weight = u1@u1.T / N
loss_neg = ((weight@u1).detach() * u1).sum(-1)
# simplified VICReg
loss = 2 * (loss_pos + lambda * loss_neg).mean()
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where λ = 2λ1N
2

C(N−1)2 and ṽ = v − v̄ is the de-centered

sample.

For the variance term L3, we have:
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For final loss function L = L1 + L2 + L3, its gradient

w.r.t uo
1 can be represented as:
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where B = N
λC(N−1) (2λ1W

′
diag + λ2

2 diag(✶(γ −

std(vo1) > 0) ⊘ std(vo1))). Here W ′
diag is the diagonal ma-

trix of W ′, diag(x) is a matrix with diagonal filled with

the vector x, ✶(·) is the indicator function, and ⊘ denotes

element-wise division.

A.4. Pseudocode of UniGrad

Algorithm 6 Pseudocode of UniGrad in PyTorch style.
# u1, u2: normalized representations for two augmented

views of shape [N, C]
# F: the moving average of correlation matrix
# rho: the moving average coefficient

# positive term
loss_pos = -(u1*u2.detach()).sum(-1) # [N, 1]
# negative term
tmp_F = ((u1.T@u1 + u2.T@u2) / (2*N)).detach()
F = rho*F + (1-rho)*tmp_F # update moving average
loss_neg = (u1@F)*u1.sum(-1) # [N, 1]
# UniGrad
loss = (loss_pos + lambda * loss_neg).mean()

B. Implementation Details

We provide the experimental settings used in this pa-

per. For 100 epochs pre-training and linear evaluation, we

mainly follow [8]; For 800 epochs pre-training, large batch

size is adopted for faster training and hence we mainly fol-

low [21].

Pre-training setting for 100 epochs. SGD is used as the

optimizer. The weight decay is 1.0 × 10−4 and the mo-

mentum is 0.9. The learning rate is set according to lin-

ear scaling rule [16] as base lr × batch size/256, with

base lr = 0.05. The learning rate has a cosine decay sched-

ule for 100 epochs with 5 epochs linear warmup. The batch

size is set to 1024. We use ResNet50 [18] as the backbone.

The projection MLP has three layers, with the hidden and

output dimension set to 2048. BN and ReLU are applied

after the first two layers. If a momentum encoder is used,

we follow BYOL [21] to increase the exponential moving

average parameter from 0.996 to 1 with a cosine scheduler.

We list these hyper-parameters in Table

Pre-training setting for 800 epochs. LARS [32] optimizer

is used for 800 epochs pre-training with a batch size of

4096. The weight decay is 1.0 × 10−6 and the momentum

is 0.9. The learning rate is set with base lr = 0.3 for the

weights and base lr = 0.05 for the biases and batch nor-

malization parameters. Cosine decay schedule is used after

a linear warm-up of 10 epochs. We exclude the biases and

batch normalization parameters from the LARS adaptation

and weight decay. For the projector, We use a three-layer

MLP with hidden and output dimension set to 8192. Other

configurations keep the same as the pre-training setting for

100 epochs.

Linear evaluation. We follow the common practice to

adopt linear evaluation as the performance metric. Such

Hyper-parameter Value

opitmizer SGD

weight decay 1.0× 10−4

base lr 0.05
lr schedule cosine

warmup 5 epochs

batch size 1024

projector 3-layers MLP

init momentum 0.996
final momentum 1.0
momentum schedule cosine

Table 7. Hyper-parameters for 100 epochs pre-training. We use

the same hyper-parameters for different loss functions.

practice trains a supervised linear classifier on top of the

frozen features from pre-training. LARS [32] is used as the

optimizer with weight decay as 0 and momentum as 0.9.

The base learning rate is 0.02 with 4096 batch size, and a

cosine decay schedule is used for 90 epochs.

C. Additional Results

C.1. Projector Structure

The design of projector is another main factor that influ-

ences the final performance and also varies across different

works. [17] applies linear projection to contrastive learning.

SimCLR [6] finds that a 2-layer MLP can help boost the per-

formance. SimSiam [8] further extends the projector depth

to 3. We explore the effects of different projector depths

in Table 9. Here UniGrad with 100 epochs pre-training is

used. The results show that increasing the depth of projector

from 1 to 3 can greatly boost the linear evaluation accuracy.

However, the improvement saturates when the projector be-

comes deeper.

Moreover, Barlow Twins [34] extends the dimension of

projector from 2048 to 8192, showing notable improve-

ment. We further study the effect of projector’s width in

Table 10. For simplicity, we change the output dimension

together with the hidden dimension. UniGrad with 100

epochs pre-training is used. It’s shown that increasing the

projector width can steadily increase the performance, and

does not seem to saturate even the dimension is increased to

16384.

C.2. Semisupervised Learning

We finetune the pretrained model on the 1% and 10%

subset of ImageNet’s training set, following the standard

protocol in [6]. The results are reported in Table 11. Com-

pared with previous methods, UniGrad is able to obtain

comparable results with [29] and obtain 5% and 1% im-

provement from other methods on the 1% and 10% subset,



Method
VOC07+12 detection COCO detection COCO instance seg

APall AP50 AP75 APbox
all APbox

50 APbox
75 APmask

all APmask
50 APmask

75

Supervised 54.7 84.5 60.8 38.9 59.6 42.7 35.4 56.5 38.1

MoCov2 [7] 56.4 81.6 62.4 39.8 59.8 43.6 36.1 56.9 38.7

SimCLR [6] 58.2 83.8 65.1 41.6 61.8 45.6 37.6 59.0 40.5

DINO [5] 57.2 83.5 63.7 41.4 62.2 45.3 37.5 58.8 40.2

TWIST [29] 58.1 84.2 65.4 41.9 62.6 45.7 37.9 59.7 40.6

UniGrad 57.8 84.0 64.9 42.0 62.6 45.7 37.9 59.7 40.7

Table 8. Transfer learning: object detection and instance segmentation. VOC benchmark uses Faster R-CNN with FPN. COCO benchmark

uses Mask R-CNN with FPN. The supervised VOC results are run by us.

Depth 1 2 3 4 5

Linear Eval 60.7 65.2 70.3 70.0 69.8

Table 9. Effect of projector depth.

Width 1024 2048 4096 8192 16384

Linear Eval 68.3 70.3 70.5 70.9 71.2

Table 10. Effect of projector width.

Method
1% 10%

Top 1 Top 5 Top 1 Top 5

Supervised 25.4 48.4 56.4 80.4

SimCLR [6] 48.3 75.5 65.6 87.8

BYOL [21] 53.2 78.4 68.8 89.0

Barlow Twins [34] 55.0 79.2 69.7 89.3

DINO [5] 52.2 78.2 68.2 89.1

TWIST [29] 61.2 84.2 71.7 91.0

UniGrad 60.8 83.8 71.5 90.6

Table 11. Semi-supervised learning on ImageNet.

respectively.

C.3. Transfer Learning

We also transfer the pretrained model to downstream

stasks, including PASCAL VOC [14] object detection,

COCO [25] object detection and instance segmentation.

The model is finetuned in an end-to-end manner. Table 8

shows the final results. It can be seen that UniGrad delivers

competitive transfer performance with other self-supervised

learning methods, and surpasses the supervised baseline.

D. Licenses of Assets

ImageNet [12] is subject to the ImageNet terms of ac-

cess [11].

PASCAL VOC [14] uses images from Flickr, which is

subject to the Flickr terms of use [15].

COCO [25]. The annotations are under the Creative

Commons Attribution 4.0 License. The images are subject

to the Flickr terms of use [15].


