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In this supplementary material, we provide the imple-
mentation details of our proposed approach, more results
on structure visualization, and further analysis on ablation
results. We also provide the video results for comparison
with state-of-the-art approaches, ablation study, and struc-
ture visualization in supplementary.mp4.

1. Implementation Details

We implement our model based on the released codes
of [6,7]. In particular, A U-Net [5] with skip connections
is adopted as the image generator, and an Hourglass [4]
network is utilized to predict motion and root anchors to-
gether with their affine transformation parameters. The flow
mask estimator is also implemented by a U-Net. For the
TaichiHD dataset, we further employ a background motion
predictor to estimate the background motion similar to [7],
which is implemented as the encoder part of a U-Net.

The inputs of the motion estimator, flow mask estimator
and background motion predictor are all at the resolution of
4x down-sampled input image similar to [0, 7]. The num-
bers of motion anchors and latent root anchor are set to 10
and 1 for all datasets. The intermediate anchors is set to
3 for the TaichiHD and Voxcelebl datasets, and 4 for the
MGIF dataset. The geometric transformation T (in Eqn.
(11) of the main paper) is implemented as a random TPS
(thin-plate spline [1]) transformation. And the input image
is augmented under a random affine transformation.

We adopt Adam [3] optimizer with initial learning rate
0.0002 and decay it at the end of 60 and 90 training epochs
by a factor & = 0.1. The norm of the gradients of the mo-
tion estimator is clipped to 1 for stability following [2]. The
batch size is set to 32 for 256 x 256 input resolution and
16 for 512 x 512. We train all datasets for 100 epochs us-
ing 4 Tesla V100 cards. Other implementation settings are
exactly the same as those in [6].

Attention of Anchors: As formulated in Eqn. (14) of the
main paper, an attention layer is designed to estimate the
constraint relation between the intermediate anchors and

motion anchors. Specifically, we take out the feature map
Fd e REXHXW of the driving frame of the last layer of the
motion estimator, and bi-linearly sample the point features
at the position of intermediate anchors ( zf 0 =1,...,1)
and motion anchors (z,‘f, k = 1,..., K) respectively, de-
noted as F¢ € ROXXIXI pd c ROXIXIXK \which
we further reshape to R’*¢ and RX*®. We introduce
Wkey Woue € RE>¢, where ¢ = 64, as the parameters
of two fully connected layers, the attention weight w is then
computed as follow:
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where w € R/ and Y, wix, = 1,Vi. We further let w; €

R™*K . € RI*! denote the i-th row and k-th column of
w.

w = softmax (

Directly learning the attention weight w via the HDAM
loss Lhdam in Eqn. (14) of the main paper might cause
a trivial solution that each row of the attention weight w
is activated by a single element only. To avoid this trivial
solution and facilitate the better learning of w, we propose
the orthogonal loss and the completeness loss to constrain
the rows and columns of w:

Eortho = Z Z - le - ijl 3 (2)

A E)

> (0= welly) 3)

ks llwll, <8

‘Ccompl =

where ¢ is a predefined threshold and empirically set to 0.3
in our experiments. Intuitively, the orthogonal loss is de-
signed to let different intermediate anchors control different
motion anchors, and the completeness loss is to ensure that
each motion anchor should be controlled by a larger weight
than a give threshold attention value d. These two losses
are combined together with £}, 44, and trained equally with
those in Eqn. (15) of the main paper.



Figure S1. Additional structure visualizations on the three datasets.

Equivariance detection: Due to the lack of structural su-
pervision in this task, a few of the learned motion anchors
can be meaningless in some situations, which means it does
not contributes to the optical flow estimation process (Eqn.
(3) of the main paper) and the corresponding weight mask
M tends to be zero at all spatial locations. To our findings,
these motion anchors have a large equivariance loss defined
in Eqn. (11) of the main paper, which means it tends to
be predicted to a fixed coordinate location given any im-
ages. By contrast, a normal motion anchor is usually pre-
dicted to a fixed physical position given any images, and
the predicted coordinate varies when motion occurs in the
corresponding physical part. Given an empirically set value
e = 0.3, we detect the abnormal motion anchors by judging
if the equivariance loss of a motion anchor on the training
set is larger than €, and then remove those motion anchors
in the attention process and in our qualitative results.

2. Additional Results on Structure Visualiza-
tion

We provide more examples of the discovered object
structure in Fig. S1. The video results for structure visual-
ization are also provided. Similar to the findings in the main
paper, we observe that the learned root anchor is generally
located at the object centroid regardless of its identity or
background; moreover, intermediate root anchors are often
located at different local regions of an object, which enables
them to capture more detailed motions of these object parts.
This clearly demonstrate the effectiveness of our proposed
HDAM approach on discovering the object structure when
performing motion transfer.

3. Further Analysis on Ablation Results

As can be seen from Figure 1 and Figure 6 of our main
paper, the intermediate anchors learned on the TaichiHD
dataset often overlap with a motion anchor. We analyze

this in a simple situation: assuming there are two motion
anchors k1, ko controlled by a intermediate anchor ¢ with
equal attention weights, then according to Eqn. (1) and Eqn.
(8) of the main paper, the constraint loss can be computed
as follow:
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We further assume that Ly, ,«; is minimized to zero for
simplicity, then we have:

ek, =T Gl = =Ml =T G, ©

The meaning of Eqn. 5 is that the two motion anchors k;
and k5 is constrained by the affine transformation 7; of the
intermediate anchor. Assuming the learned intermediate an-
chor is overlapped with the motion anchor k4, which means:
According to Eqn. 6, the left side of Eqn. 5 is zero. More-
over, by using Eqn. 6 and Eqn. (7) of the main paper, we
can compute 7; ([, ) as follow:

T (z,‘fg) =z, + Oi(z,‘fg - zgl) @)
Summarizing Eqn. 5, Eqn. 6 and Eqn. 7 we can obtain:
al(zgz - zgl) = 222 - 21‘31 (8)

The Eqn. 8 indicates that the motion anchors k; and ks in
the source and driving image are explicitly constrained by
the affine transformation 6; of the intermediate anchor. This
explains that, the overlapping between intermediate anchors
and motion anchors, is reasonable and can ease the learning
process. We take a simple situation for analysis, while in
those complicated and non-overlapping situations, the con-
straint relations between different motion anchors are im-
plicitly implemented through intermediate anchors.
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Figure S2. Qualitative comparison on the Voxceleb1 and FashionVideo datasets.

4. Video results

We give video results in the provided video file, in-
cluding qualitative comparison, ablation study and struc-
ture visualizations. For analysis, we present the generated
key frames on the Voxcelebl and FashionVideo datasets in
Fig. S2. As can be seen from the left side of the figure, gen-
erated videos using our method better preserves the struc-
ture of source faces, while FOMM [6] and RegionMM [7]
suffers from more distortions in the synthesized face struc-
tures. And as shown in the right side of the figure, on the
Fashion dataset, our methods generates more stable arm
motions when the model turns around. These results sug-
gest that our HDAM model generally constrains the ob-
ject structures well, which enables it to synthesize more
structure-stable videos.
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