
Evading the Simplicity Bias:
Training a Diverse Set of Models Discovers
Solutions with Superior OOD Generalization

Supplementary material

A. Past reviews and FAQ
We include questions and comments received during the

reviewing process along with our answers. We hope that
they will be helpful to readers.

Q1: Where to split a model into “feature extractor” and
“classifier” ? The separation between the feature extractor
and the classifier is somewhat arbitrary. In our experiments,
it was dictated by computational reasons. Using a pre-
trained ResNet as the feature extractor was a natural choice.
The subsequent classifiers need sufficient width/depth such
that they can model different functions on top of the fea-
tures. The choice of 2-hidden-layer MLP was a compromise
between expressibility and computational cost. A possible
extension of this work would be to evaluate deeper classi-
fiers or complete replicated models.

The choice of the “extractor/classifier” separation also
affects the dimension along which the gradients are com-
pared. For example with ResNet, features undergo a global
spatial pooling before being passed to the classifier. The
gradients are thus compared only across channels, not spa-
tial dimensions. In our experiments with collages, the fea-
ture extractor is the identity function and the classifier is
a fully-connected network operating directly on the pixels.
The gradients are thus compared across spatial dimensions

Q2: Why not design the diversity regularizer on the ac-
tivations of the models rather than on the input gradi-
ents ? Because the activations in different models live in
“different spaces” so they are not directly comparable. Con-
sider any chosen layer: the activations do not tell much
about the function implemented by the whole network.
Whereas the input gradients (through the whole network)
do.

The activations also cannot be used with a simple dot
product to compare different models. For example, one can
rearrange the weights of a model to permute the channels of
the activations without actually changing the function im-
plemented by the whole network.

Q3: Is the introduction of more diversity just a fancy
random search ? The common training by SGD is already
stochastic. It is not uncommon to restart training by SGD
with different random seeds if training does not converge.
But simply using different random seeds is not sufficient
to evade the simplicity bias however, whereas the proposed
method is.

The proposed method does not bring any additional

source of randomness. It makes solutions found by SGD
from different initializations more different from one an-
other.

Q4: Why not use the Colored MNIST toy data ? A num-
ber of recent works have use “Colored MNIST” toy data
introduced in [1] to evaluate OOD generalization. We be-
lieve it is an overly simplistic setting. The so-called “color”
only means that the MNIST pixels are stored on one discrete
channel or another. This is like operating on symbolic data,
or on perfectly disentangled representations. And learning
disentangled representations from high-dimensional data is
itself a largely unsolved problem. Our collages achieves
a similar objective (multiple predictive signals of different
complexity) but it is more challenging and representative of
real data.

Q5: Why not use dataset [X] ? We chose a few datasets
representative of OOD challenges in computer vision (mul-
tiple predictive signals, biased data, generalization across
visual styles). We had to choose datasets with an es-
tablished OOD test set. For the reasons explained at
length in the paper, no improvement is expected with
identically-distributed training and test sets.

Q6: Why doesn’t in-domain (ID) performance necessar-
ily improve when OOD performance does ? Because the
irreducible error with robust features can be larger than with
spurious ones. This is not uncommon and it often makes
improvements in OOD performance come at the expense of
ID performance.

To do well ID, a model can exploit any predictive pattern
in the training data, including spurious correlations. For
example, birds may be reliably recognized in the training
data by detecting a blue background. However, relying on
blue backgrounds is not desirable for an OOD bird detector.
A good OOD model would instead rely on shape, such that
it can recognize birds in any scene. But shapes are more
often ambiguous, so in ID scenes (where the blue color is
a reliable indicator of birds) the OOD model will not be as
accurate as a blue-background detector.

Q8: “In stage one, there is no guarantee that simple bi-
ases (i.e. spurious features) and complex patterns (i.e.
robust features) can be disentangled. Could each model
in the collection be a mixture of simple biases and com-
plex patterns ?” It is correct that no semantically or
causally-meaningful disentanglement can be guaranteed.
What can be guaranteed is that the models trained in a
large-enough set cannot be decomposed into “simpler”, lo-
cally independent functions. Indeed, [65] showed that local
independence enforced with orthogonal gradients leads to
the recovery of sparse predictors. As one increases the num-
ber of predictors fitted in parallel, they approach a “maximal
set” as defined in [65]. This implies functional simplicity, in
the sense that each predictor in a maximal set cannot be fur-

ther decomposed into a combination of locally independent
functions.

Q8: “Is it possible to train all 96 MLP classifiers simul-
taneously (in parallel) on a single GPU ?” Indeed we had
no issue training 96 MLPs on a laptop GPU, thanks to the
sharing of mini-batches across models.

Q9: “In Table 1, can you explain the decrease in accuracy
when increasing the number of models from 8 to 16 ?” We
attribute this decrease in accuracy to evaluation noise since
it is well within the standard deviation across runs.

Q10: “Can you elaborate on the connection between this
paper’s findings and the simplicity bias ?” The connec-
tion follows from the recent evidence [70] that the simplic-
ity bias is an important source of poor OOD generalization
(studied e.g. with MNIST/CIFAR collages in [70]). Our
study is however not strictly tied to the simplicity bias: the
proposed method improves the sampling of the hypothe-
sis space, regardless of the default solution being explained
by the simplicity bias or by other effects, such as neural
anisotropies for example [52].

Q10: “Can the method apply to complete ResNet-scale
models ?” The extension to full models involves no con-
ceptual leap since the regularizer operates in the space of
representations (input or latent), not of weights. The ap-
plicability of our findings to simple models with pretrained
features is certainly useful in itself. We haven’t addressed
the tuning of full-scale models so far due to our limitations
in computational resources.

Q11: “By relying on model selection to select the de-
sired inductive biases, could the method be at greater
risk of adaptive overfitting, since it requires more eval-
uations on the test set than other OOD approaches ?”
Model selection is not limited to cross-validation, other
choices include contrast sets [16], calibration-based meth-
ods [80], model explainability with expert knowledge, etc.
If cross-validation is used in a real application, OOD vali-
dation data would be used, never the test set data itself obvi-
ously. Our results under “oracle selection” serve to provide
an upper bound on achievable OOD performance (i.e. with
perfect model selection).

Q12: Clarification of some definitions. Spurious cor-
relations: statistical pattern in the data that does not re-
flect a causal relationship (i.e. not guaranteed to transfer
OOD) but which results from confounding (e.g. selection
bias). Inductive biases: assumptions made by a learning
algorithm about the nature of the target function to enable
finite-sample generalization.

B. OOD Generalization and causality
The ultimate goal of supervised machine learning is to

learn a model that mimics a real-world process that jointly

determines the values of an observed variable X and target
variable Y . It makes sense to learn a task when the process
relates these variables with causal (X → Y) mechanisms,
such that the conditional P (Y |X) is a property of the task:
it will always remain the same across training and (OOD)
test conditions. The OOD setting used throughout this pa-
per is also called covariate shift: P (Y |X) is constant and
only the marginal P (X) varies across training and test sets.
For example, X can represent images being drawn as pho-
tographs during training and paintings during testing.

To achieve OOD generalization across arbitrary covari-
ate shifts, it is necessary that the causal mechanisms of in-
ference (within the learned model) mirror the causal mech-
anisms of the data-generating process. In other words, fea-
tures responsible for the prediction of a label by the model
should be the same as those causally related to this label
in the training data. However, causal properties of the
real-world process are not properties a joint distribution
over (X,Y) of training examples [68]. The information
necessary for OOD generalization is lost by drawing i.i.d.
training samples from the data-generating process. This is
why optimizing a model for ERM cannot generally achieve
the above condition. Even infinite amounts of training
data cannot bring back this missing information.

Note that all of the above is true for arbitrary tasks and
data distributions. If task- or dataset-specific knowledge is
available, it sometimes sufficiently circumscribes the space
of possible ground-truth data-generating processes to allow
recovering some causal properties from observational data
(see examples with images [40] and time series [33]). The
method of this paper makes use of no such prior knowledge.

C. Project chronology and negative results
This section is an informal chronology of the develop-

ments that led to this paper, including things we tried that
did not work.

Initial motivation. The initial motivation for this work was
to learn patterns that a model would not learn by default
because of the simplicity bias. The closest existing works
were “debiasing methods” popular for visual question an-
swering [7,10,31] and NLP [3,11,41,71,77]. They typically
train one model that is biased by design (for example being
fed a partial input) while a second model is subsequently
trained to be different, hence more robust. Our first inno-
vation was to enforce this difference in the space of input
gradients of these models (rather than in the space of their
activations, weights, etc.). This quickly appeared effective
and easier to train than adversarial objectives of many debi-
asing methods. A later literature search showed that input
gradients had previously been used in similar [32] and other
applications [14].

To improve over existing debiasing methods, we ex-

tended our approach to >2 models and removed the reliance
on a “weak” first model by design. Instead, we used the
same architecture for all models and realized the simplic-
ity bias would make any model “weak” by default. The
publication of multiple studies in late 2020 related to the
simplicity bias encouraged pursuing with this approach.

Parallel training. Our first implementation used sequential
training of multiple models, inspired by existing debiasing
methods. We implemented a parallel version as a baseline,
but it quickly proved more effective, to our surprise. Despite
much effort, the sequential scheme could not equate the par-
allel version. We gave up the former after coming up with
a satisfying intuitive explanation. The sequential training
makes each model only marginally different from the previ-
ous one (for example, with the collages, every model would
use another pixel of the MNIST digit, but would never fo-
cus on a completely different part of the images). This
holds even after training a very large number of models, and
whether the diversity regularizer is applied on the last two
models, or on the whole collection of models trained so far.
In contrast, the parallel training, using with pairwise con-
straints between all models simultaneously, could produce
multiple potentially-good models at once.

Similarity of gradients. To achieve the goal of maximiz-
ing the diversity of the models, we designed many elaborate
measures of similarity between the gradients. The intuitive
goal was to “spread” the learned solutions evenly within
the space of predictors. However, none of these alterna-
tive measures worked better than the sum of pairwise dot
products described in this paper. Alternatives that we tested
include cosine distances, the determinant of a matrix of dot
products (similar to determinantal point processes or DPPs)
or of other kernel function of the dot products, a soft ap-
proximation (logSumExp) of the maximum of the pairwise
dot products (rather than the overall sum).

We also tried using the gradient w.r.t. the spatial in-
put (all input pixels), or w.r.t. intermediate representations
in CNNs. We also tried all of these as gradient-feature
products (in the style of the Grad-CAM method). The
bare gradients worked great with the collages, and the
gradient-feature products worked clearly better with ResNet
as the feature extractor. Our larger-scale experiments there-
fore all use the gradient-feature products.

We also tried applying various normalizations (L0, L1,
L2, softmax: none worked) and rectifications to the gra-
dients (absolute value, ReLU/positive part, negative part,
square: the square did not work at all, but all other options
performed similarly).

As described in the paper, we use the gradient of the top
predicted score. Using the gradient of its corresponding
logit (before sigmoid rectification) seems to work equally
well. We tried alternatives: the gradient of the score pre-

dicted for the ground truth class, or the gradient of the clas-
sification loss. Both performed worse.

Datasets. We started with toy data (32-dimensional vectors
of numeric values generated with known functions) in the
style used in [55]. We then moved to colored MNIST digits.
This dataset proved useless since the signal is perfectly dis-
entangled across two input channels, which is ridiculously
simple and unrealistic. We found the multi-dataset col-
lages [70] the best compromise between toy and real data.
We then moved to the real datasets PACS and BAR. Overall,
most of our developments were done with the collages and
PACS (using art painting as the test style because it seemed
to be the PACS setting with the clearest possible improve-
ments, from results of other methods).

D. Related work

We provide below an extended literature review. Since
this paper addresses a central problem in machine learning,
it touches many well-established research areas.

Importance of OOD generalization. Failure to general-
ize OOD is the root cause of many limitations of machine
learning: adversarial attacks [26], some model biases [49],
failure to generalize across datasets [76], etc. Poor OOD
generalization is only apparent and problematic with OOD
test data. Academic benchmarks have traditionally been
built with i.i.d. training and test samples. This rarely holds
in the real world, and OOD is closer to the norm in real-life
deployments of machine learning models.

Evaluation with i.i.d. training/test sets hide a model’s
limitations because spurious correlations and biases in the
training data also exist in the test data. Thanks to the in-
creasing awareness of issues of robustness with deep learn-
ing, many benchmarks now include OOD (a.k.a. “chal-
lenge”) tests sets [16, 20]. OOD evaluation can also be
done by cross-dataset evaluation without fine-tuning (i.e.
zero-shot transfer) [60]. The assumptions then is that the
spurious patterns in different datasets are uncorrelated.

Improving OOD generalization. Given its central place,
OOD generalization is addressed from multiple angles by
multiple communities making different assumptions. Do-
main generalization methods [21] use multiple domains
during training. Domain adaptation methods use unla-
beled data from a second domain for rapid adaptation at
test time. Debiasing methods use expert knowledge of the
spurious correlations to prevent the model from using them.
Adversarial training methods use expert knowledge of the
type of statistical patterns that are undesirable to learn, or
notions of smoothness and continuity that a model should
exhibit. Other training objectives have also been proposed

to use interventional data such as counterfactual exam-
ples [25, 73] or non-i.i.d. datasets like non-stationary time
series [23, 30, 58]. The common point to all approaches
that improve OOD generalization is that extra knowledge
is provided, either as expert task-specific knowledge, or as
non-i.i.d. data. This corroborates the point made through-
out this paper that i.i.d. data alone (even in infinite quantity)
cannot improve OOD generalization.

Domain generalization. The goal of domain generaliza-
tion (DG) is to learn models that generalize across visual
domains such as photographs, sketches, paintings, etc. Im-
ages from multiple domains (a.k.a. training environments)
are provided for training. The model is then evaluated on
one held-out domain. The training environments can be
formalized as different interventions on the data-generating
process. This was shown to carry the kind of information
required for OOD generalization [1, 56]. Intuitively, DG
methods discover features of the input that are “common”
and similarly-predictive across the environments. The prin-
ciple is sound if a large number of training domains is avail-
able but this is not the case with existing datasets. PACS for
example provides only three training domains. Although
some of the information necessary for OOD generaliza-
tion is theoretically there, the learning problem is still very
ill-defined because of this large distribution shift between
the training domains. Practically, this leaves much room to
apply various inductive biases. This explains the plethora
of methods already developed for this dataset. Because the
problem is ill-defined, the effectiveness of any such method
can only be assessed when confronted with the test domain
(and this is what we also need to do after training a collec-
tion of models with our method).

Gulrajani and Lopez-Paz [21] discussed the practice of
model selection using the test domain. They observed
that no existing method performed better than ERM when
access to the test domain is restricted. This is unsur-
prising to us: this follows from the fundamental need, to
achieve generalization, of substantial knowledge about the
relation between training and test distributions. And this
information is unlikely to be available from a handful of
disparate training domains.

Our method does no require the labels of training envi-
ronments used by DG methods. Our setup is more similar
“single-source” domain adaptation [59,79]. These methods
augment the training data using a generative model to ex-
pand the region of feature space in which the predictions of
the model are “stable”. Consequently, these methods can-
not make the model use features of the data it was not using
in the first place. Thus there is no hope to counter the sim-
plicity bias.

Debiasing. Methods for debiasing are concerned with im-
proving generalization of models against a precisely identi-
fied (undesirable) factor of variation in the data [3,11,41,48,
71,77]. In computer vision for example, this can be remov-
ing the bias towards texture in the ImageNet dataset [5,18].
In NLP, this can be removing the “hypothesis-only bias” of
entailment models, that make these models guess an answer
without considering the whole input [11].

Debiasing is relevant to this paper because most meth-
ods rely on training multiple models that each use the in-
put differently. The source of improvement is the explicit
specification of the factor of variation to be be invariant to.
Typically, debiasing methods train a pair of models to re-
spectively focus or ignore it. The latter model is used at test
time. For example in [3], a first CNN model is trained with
an architecture providing a small receptive field, such that is
focuses on local texture. A second CNN is then trained with
a larger receptive field while a regularizer makes its activa-
tions uncorrelated with the first one’s, such that it focuses
on overall shape more than on texture. Variations of the
method include the extension to more than two models [71].
In comparison to our work, debiasing methods require the
explicit specification of a factor of variation to ignore and
they require it to be easily disentangled from other features
of the input.

Some debiasing methods claim to require no explicit
knowledge of the bias [11,67,78]. They actually make this
knowledge only less explicit: the authors design the archi-
tecture of the models such that the weak learner is forced to
use the bias (through limited capacity, receptive field, etc.).
Our method does not rely on heterogeneous architectures
and is applied to many more models. We also found that
parallel training of multiple models was much more effec-
tive than the sequential training used with most debiasing
methods.

Encouraging diversity within one model. We can draw
parallels between the method in this paper and existing
methods that encourage a notion of diversity. Classical fea-
ture selection approaches [22] are related but they not suit-
able to deep learning model and high-dimensional represen-
tations. For example, SCOPS [29] performs self-supervised
part discovery using an objective of orthogonality (akin to
diversity) between parts. In comparison, we use diversity
as an objective alongside predictive performance. Diver-
sity was also used an objective during model compression,
for fusing redundant neurons with similar activations [43].
Closer technically to our method, [14] uses the cosine simi-
larity of gradients of multiple losses to measure their mutual
correlation in the context of multitask learning. Previous
works [32, 53] proposed to promote diversity in the space
of learned representations within a model. Our approach is
different in that we promote diversity across multiple in-

dependent models. These works focus on synthetic data
and adversarial robustness while we show improvements on
multiple benchmarks with real data.

Encouraging diversity within ensembles. Ensembling
several models is a common technique to improve predic-
tive performance over a single model. The diversity of the
models in an ensemble is important [86] and usually pro-
moted by training models with different hyperparameters
or random seeds, or by enforcing diversity in the space of
weights of the models [84]. In comparison, our diversity
loss operates in the space of the gradients of the models.
They need to be differentiable w.r.t. their input but their
implementation as neural networks is irrelevant. For adver-
sarial robustness, ensembles have shown benefits. Both [2]
and [54] encourage diversity in the distributions of the mod-
els’ logits. [32] minimizes the cosine similarity between
gradients of the models. For domain generalization, [9]
learns an ensemble of classifiers on CNN features. Each
classifier is trained on a different visual domain and they
promote diversity by minimizing the overlap between fea-
tures used by each model, such that each specialize to one
domain.

The multiverse loss [38, 42] improves transfer learning
by duplicating a cross-entropy loss over multiple linear clas-
sifiers with an orthogonality constraint on their weights. It
was shown to increase the number of distinct discriminative
directions of the learned representation. It can be seen as a
special case of our method.

In [64], the authors use input gradients to sequentially
train multiple copies of a model to focus on different input
features. The authors however mentioned in private com-
munication that “sequential training doesn’t work in most
cases” which has also been our experience (see our nega-
tive results in the appendix). Their experiments are limited
to toy datasets. After the writing of this paper, we real-
ize that the same authors subsequently honed in on a par-
allel training scheme and diversity regularizer very similar
to ours [63, 65], using a cosine similarity of gradients. Our
motivation and experiments are very different and we in-
vite the reader to consult those papers for a complementary
view.

In [61], the authors train a generative model (Hyper-
GAN) of parameters for a chosen network architecture.
Their goal is to produce a diverse set of models, which
they enforce and evaluate in parameter space. We think that
our use of input gradients is more implementation-invariant
and better capture the overall function implemented by deep
models. We also believe that our evaluation with OOD tasks
better captures the functional diversity of the learned mod-
els.

The earliest use of input gradients of neural networks
was proposed by Drucker and LeCun [13] as “double back-

propagation” to improve in-domain generalization. Almost
identical formulations were described in many subsequent
papers; see [28] and citations therein.

E. Experimental details
Collages dataset. We use images from MNIST,
Fashion-MNIST, CIFAR-10, SVHN. The images are con-
verted to grayscale. The images from MNIST and
Fashion-MNIST are padded to 32×32 pixels. We pre-select
two classes from each dataset to be respectively associ-
ated with the collages 0 and 1 labels. We follow [70] and
choose 0/1 for MNIST, automobile/truck for CIFAR-10,
and additionally choose 0/1 for SVHN and pullover/coat for
Fashion-MNIST. We generate a training set of 51,200 col-
lages, and multiple test sets of 10,240 collages each. Each
collage is formed by tiling four blocks, each containing
an image chosen at random from the corresponding source
dataset. The images in our training/evaluation sets are se-
lected respectively from the original training/test sets of the
source datasets.

We propose two versions of the dataset. An ordered ver-
sion, where the four blocks appear in constant order, and a
shuffled version where the order is randomized in every col-
lage. The shuffled version can be used to demonstrate that
a given method does not rely on a known or constant image
structure.

In the training set, the class in each block is perfectly
correlated with collage label. In each of the four test sets,
the class in only one block is correlated with the collage la-
bel. The other blocks are randomized to either of its two
possible classes. We also generate four training sets in this
manner, used solely to obtain upper bounds on the highest
accuracy achievable on each block with a chosen architec-
ture.

Collages experiments. We use the ordered version of the
dataset. This allows generating the visualizations of Fig-
ure 4 and the use of a simple fully-connected classifier. We
initially downsample the images by a factor 4. In our mod-
els, the feature extractor is the identity function and the clas-
sifier is a fully-connected MLP with two hidden layers of
size 16 with leaky ReLU activations (leak rate: 0.01). The
classifier is followed by a sigmoid and trained to minimize
a standard binary cross-entropy loss. Training is performed
by SGD with Adam, a learning rate of 0.001, mini batches
of size 256, for a fixed number of 65 epochs (13k iterations)
with no early stopping. The diversity regularizer is imple-
mented as described in the paper. The visualizations in Fig-
ure 4 are obtained with the same model trained on images
downsampled by a factor 16. The input gradient is evalu-
ated and averaged on randomly selected test images. They
are then upsampled by bilinear interpolation to the origi-
nal collage dimensions of 64×64 for visualization purposes
(without upsampling, they obviously look more “blocky”).

BAR Experiments. We follow [48] and use frozen fea-
tures from a standard pretrained ResNet-50. We train a
2-hidden-layer MLP classifier on these features. We spent
some effort optimizing this baseline to the point of almost
equating the method proposed in [48] (they only used a lin-
ear classifier on ResNet features). We use Adam, a learning
rate of 0.001, a batch size of 256, and hidden layer dimen-
sions of 512. We applied our method on this strong baseline.

As usually done with ResNet, feature maps are glob-
ally pooled before the classifier. Thus, unlike the experi-
ments on collages, the features h have no spatial dimen-
sions. The input gradients are compared across channels in-
stead. We implement this with a variant of Eq. (4) inspired
by the Grad-CAM method [69], in which we multiply the
gradients (with respect to the features) by the features them-
selves:

δgϕ1
,gϕ2

(h) = (h∇hg
⋆
ϕ1
).(h∇hg

⋆
ϕ2
) . (7)

Each model is trained for 200 iterations with no early
stopping. The optimal weight of the regularizer is found by
selection on the OOD test set. For the reasons explained at
length in the paper, we found no reliable strategy to tune it
without access to the OOD test set. This strategy is used for
both our method and all other regularizers, ensuring a fair
comparison.

PACS Experiments. We use a standard ResNet-18 as the
feature extractor like most current methods. [21] showed
that a ResNet-50 could slightly improve performance but
we did not have the computational resources to do so, and
the results of most methods to compare ours with also use
ResNet-18. We first fine-tuned a ResNet-18 in the standard
“ERM” setup (aggregated data of three training domains,
linear output layer on top of ResNet features, Adam opti-
mizer, learning rate of 4e−5, batch size of 32, with aug-
mentations described in [21], and early stopping based on
test set accuracy). We found that training with a sigmoid
activation and binary cross-entropy loss was slightly better
than the usual softmax. All our PACS models (baselines and
others) therefore use a sigmoid output. All of these choices
provided a very strong baseline on which to test our method.
Our baseline is noticeably stronger than those in existing
papers as noted in Table 4. Demonstrating an improvement
over a strong baseline is obviously more challenging than
over a weaker one.

Our method was with a two-hidden-layer MLP as the
classifier, fed with frozen features from the fine-tuned
ResNet-18 (hidden size of 512, leaky ReLUs of rate 0.01,
Adam, learning rate 3e−5, batch size 256). We use the in-
put gradient over channels (not over spatial dimensions) de-
scribed above (Eq. 7).

Existing regularizers. We describe below the existing reg-
ularizers reported in Tables 1, 2, and 3.

1. Dropout. Used on collages only. Dropout is applied
on input images i.e. on pixels of the quarter-size images
fed to the MLP. We tuned the dropout rate, hoping that
very high dropout rates would force the model to learn
different parts of the image, but it did not work.

2. Penalty on L1 norm of gradients. This adds the fol-
lowing term to the minimization objective: ||∇hg||1.

3. Penalty on L1 norm of feature-gradient product.
Variant that uses the same product as our regularizer with
BAR and PACS (Eq. 7): ||h∇hg||1.

4. Penalty on squared L2 norm of gradients. Also
known as Jacobian regularization [28], it adds the fol-
lowing term to the minimization objective: ||∇hg||22.

5. Penalty on squared L2 norm of ReLU of gradient.
Variant that only uses the positive coordinates of the gra-
dient: ||ReLU(∇hg)||22. The rationale is that this variant
is “half-way” like the feature-gradient product described
below which also masks some coordinates of the gradi-
ent (the features come from a ReLU and have a number
of coordinates equal to zero).

6. Penalty on squared L2 norm of feature-gradient
product. Variant that uses the same product as our reg-
ularizer with BAR and PACS (Eq. 7): ||h∇hg||22.

7. Penalty on squared L2 norm of logits. Also known as
spectral decoupling [57], it adds the following term to
the minimization objective: ||g||22.

All penalty terms are summed over all training examples.

Baseline
With diversity

Figure 7. 2D Projection of the gradients {∇hg
⋆
ϕi
}64i=1 of a collection of models trained without and with our diversity regularizer (PACS

dataset, “art” as test style). Each point represents one model. With the regularizer (in red), the gradients are clearly more spread out. The
2D projection is done with t-SNE using the inverse of the dot product as the distance function. The size and color saturation of each point
are proportional to the accuracy of the corresponding model.

Climbing

Diving

Fishing

Racing

Throwing

Vaulting

Figure 8. Examples from the biased activity recognition (BAR) dataset [48]. Each row shows a different class, and the upper/lower part of
each row shows training/test images respectively (for example on the first row, rock climbing/ice climbing).

Collages dataset Accuracy (%) on

M
N

IS
T

SV
H

N

Fa
sh

io
n-

M
.

C
IF

A
R

-1
0

Upper bounds: training data with all blocks but one randomized

MNIST predictive only 99.7 49.7 50.5 49.9
±0.0 ±0.0 ±0.0 ±0.0

SVHN predictive only 50.2 89.8 50.5 50.2
±0.2 ±0.5 ±0.1 ±0.2

Fashion-M. predictive only 50.0 50.3 77.3 49.0
±0.2 ±0.1 ±0.4 ±0.4

CIFAR predictive only 49.9 50.1 50.2 68.4
±0.2 ±0.3 ±0.4 ±0.9

With proposed regularizer, 32 models

Best model on MNIST 95.4 49.6 50.6 49.8
±0.4 ±0.1 ±0.3 ±0.1

Best model on SVHN 51.0 79.3 52.2 51.4
±2.7 ±3.1 ±1.2 ±1.1

Best model on Fashion-M. 50.6 50.4 69.0 52.6
±1.6 ±0.3 ±3.0 ±1.6

Best model on CIFAR 50.4 50.3 56.1 59.6
±1.5 ±0.3 ±1.2 ±0.5

Table 5. Detailed results on collages. We identify the best model
on each test set as in Table 1. The difference is that we report
the accuracy on all four test sets (in the main paper, these were
summarized as a single row). Each model specializes and is good
on a single test set at a time. This shows that the features used by
each model do not overlap.

