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A. Technical Details of Modules

Dynamic convolution [10] is used for the feature extrac-
tion. We first perform the dynamic convolution on the sub-
ject box and object box with the relation vector to obtain the
relation feature. Then, we utilize the same dynamic convo-
lution to perform convolution on the union of the two boxes
with the relation feature. The specific process for each dy-
namic convolution is as follows:

F1 =

dr∑
i=1

xi ·W (1)
i , V1 = ReLU(LN(Conv1×1(V0,F1))),

F2 =

dr∑
i=1

xi ·W (2)
i , V2 = ReLU(LN(Conv1×1(V1,F2))),

v2 = Flatten(V2), y = LN(x+ReLU(LN(Wvv2))),
(1)

where x ∈ Rdr denotes one relation vector. V0 ∈
RC×H×W is the flattened features from roi pooling.
W

(1)
i ∈ RK1×C , W (2)

i ∈ RC×K1 and Wv ∈ Rdr×CHW

are linear transformation matrices. K1 denotes the number
of filters. Flatten(·) means reshaping a matrix to the vector
form. Convh×w(A,B) means h×w convolution on feature
map A with filters B. Bias terms are ignored. Furthermore,
since the input V0 for each dynamic convolution has a fixed
size (e.g. H = W = 7), we can take Wv as a special case
of H ×W convolutions. Thus, following [9], we decouple
Wv into depthwise H×W convolutions and 1×1 convolu-
tions with intermediate expansion to high dimensions (e.g.
2048). Since the dimensionality of object features is larger
than the channel of feature maps, this operation can reduce
the quantity of parameters.

As for the relation classification, we adopt the multi-
branch structure similar to [12, 15] and utilize the fusion
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operator in [5]. The specific process is as follows:

Gs = LN(W s
r1Fs), Go = LN(W o

r1Fo),

Gso = ReLU(Gs +Go)− (Gs −Go)⊙ (Gs −Go),

f ′
r = W r

clsReLU(Gso), f ′′
r = fr + f ′

r,
(2)

where fr is the logit calculated from the main part of our
relation detection. f ′′

r is the final logit for relation classi-
fication. W s

r1 ,W
o
r1 ∈ Rd×d and W r

cls ∈ RNcls×d are lin-
ear transformation matrices. ⊙ represents the element-wise
multiplication.

B. Two-stage Triplet Label Assignment

The triplet detector includes both object pair detection
and relation recognition. Its performance heavily depends
on object pair detection component. However, the exist-
ing SGG benchmarks often contain sparse annotations and
fail to cover all object pair instances. To increase the recall
of object pair detection, we need to generate some virtual
object pairs as pseudo-labels. Thus, we use an extra ob-
ject detector to yield a set of detected boxes, serving as the
candidates to form virtual object pairs. Even though these
generated object pairs are not in the SGG ground-truth, they
could be used to train the object pair detection component
under the object bounding box and classification loss.

As shown in Fig. 1, the procedure of two-stage triplet
label assignment is as follows: first, the object label as-
signment is conducted between predicted objects and the
ground-truth objects, and the first-stage label assignment
is conducted between predicted triplets and the ground-
truth triplets; second, the predicted objects that match the
ground-truth in previous label assignment are replaced by
the ground-truth. Also, the classification scores of the pre-
dicted objects that do not match the ground-truth in the label
assignment are replaced by hard-labels of the background,
but their boxes are not the replaced; third, these objects are
organized into a set of object pairs, i.e. the pseudo-label set
U ; forth, predicted object pairs are directly taken from the
predicted triplets that do not match the ground-truth; last,
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Figure 1. The procedure of two-stage triplet label assignment.

the label assignment is carried out between predicted object
pairs and pseudo-label set. Overall, in our method, when as-
signing ground-truth labels to predicted triplets, instead of
using the padding in original set prediction [1], we employ
the label assignment with pseudo-labels.

The key to our label assignment is the pseudo-label set
U . The detections from Siamese Sparse R-CNN are paired
with each other to form the set U , thereby making U many
elements. Actually, due to the huge gap between the magni-
tude of the triplet queries and pseudo-labels (O(N) versus
O(N2)), taking U directly for bipartite matching [3] to get
the optimal solution costs too much computation resources.
Therefore, in practice, we adopt an alternative solution to
reduce the computation complexity.

Inspired by [11], we first consider a relaxed strategy
which takes the first K small matches for each query. After
getting the M ×K pseudo-label candidates, where M indi-
cates the number of queries, we remove the duplicates and
get C remaining candidates. If C > M , we accept these
C pseudo-labels as the candidate set for matching, other-
wise we increase K. In practice, we use a binary search
to determine the minimum of K, thereby enabling a lower
computation complexity than the original algorithm.

The total loss for our whole framework is as follows:

L = LF + LB + Lobj , (3)

where LF and LB is to train the triplet detector with triplet
queries. Lobj is the loss for training Siamese Sparse R-
CNN.

C. Application of Logit Adjustment
Logit adjustment [7] is proposed to tackle long-tailed

distribution, and it can be implemented in a post-hoc man-
ner. The post-hoc logit adjustment is performed by subtract-
ing the logarithm of category frequency multiplied by a tun-
ing parameter τ from the logit for classification. Formally,
TDE and TE [12] are similar to this approach. However,
compared with logit adjustment, TDE and TE [12] lack the
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Figure 2. The performance of our method on R@50 and mR@50
under various scaling parameters.

temperature scaling τ , which is critical to the performance.
Moreover, they calculate statistics for each instance, which
costs more resources.

First, we present the selection of τ for our method. As
depicted in Fig. 2, we find that the best performance on
mR@50 is when τ is between 0.3 and 0.4. However, when
τ = 0.4, the performance of the head classes is quite poor,
and the performance drop on Recall@50 is severe. There-
fore, we choose τ = 0.3 as the best choice.

Then, we present the performance of other methods
equipped with logit adjustment in Tab. 1. In these methods,
we find τ = 1.75 is a relatively suitable choice.

D. Visualization of Model Prediction
Shown in Fig. 3, we present more results of our model

compared with another method. We find that our method
yields more precise relations where the same entities are
detected. Considering all qualitative analysis in this paper,
our framework performs well on various scenes.

Moreover, we visualize the change of an object pair in
one image. Shown in Fig. 4, the initial two learnable boxes
almost cover the whole image. As the network gets deeper,
the two boxes gradually focus on the main part of the ob-



Model R@20 R@50 R@100 zR@20 zR@50 zR@100 mR@20 mR@50 mR@100

MOTIFS†
LA 16.2 21.2 24.5 1.1 1.7 2.9 10.7 13.7 16.1

Transformer†LA 16.9 21.8 24.9 1.1 2.0 3.1 10.5 13.7 16.2

Table 1. Other methods with post-hoc approach at SGDet on VG. LA: logit adjustment. The reimplemented model is denoted by the
superscript †.
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Figure 3. Results of Recall@100 from our model and another
method. We present the directed edges matching the ground-truth
pairs, and mark the misclassified relations in red.

< cat, has, tail >

Figure 4. Visualization of an object pair changing with the depth
of the triplet detector. The two boxes are marked in orange and
red. The direction is from left to right.
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Figure 5. The relationship between the number of images and the
number of ground-truth triplets per image.

jects (e.g. the cat and its tail). Finally, the queries detect the
correct object pair with one relation prediction.

E. More Results and Analysis

In this part, we will analyze how our method outperforms
the state-of-the-art such as transformer [14].

Model mR@50 mR@100

TransformerLA [14] 6.0 7.0
OursLA 6.3 7.6

Table 2. The average mean Recalls (%) of various methods with
logit adjustment [7] on images with more than 20 labeled triplets.
LA: logit adjustment [7].

Model R@50 R@100

Transformer [14] 26.2 32.9
Ours 26.9 32.3

Ours* 28.4 33.8

Table 3. The average Recalls (%) of various methods on images
with more than 20 labeled triplets. * refers to the 800 queries.

E.1. Influence of Annotation Quantity

The mechanism of our method for SGG is based on a
limited number of triplet queries. Thus, an intuitive idea is
to evaluate the methods on images with different number of
ground-truth triplets. As depicted in Fig. 5, most images
contain fewer than 20 labeled triplets.

Then, we compare our model with transformer with logit
adjustment [7] on mean Recalls [13] in Fig. 6a and Fig. 6b.
Consistently, our model outperforms transformer by a great
margin on most images with few labeled triplets. As for
the images with more than 20 labeled triplets, their perfor-
mance is not easy to distinguish. Therefore, we calculate
the average performance on images with more than 20 la-
beled triplets. Shown in Tab. 2, our model still outperforms
transformer [14] on various mean Recalls with logit adjust-
ment [7].

We also compare our model with transformer directly
on Recalls [6] in Fig. 6c and Fig. 6d. In line with the
performance on mean Recalls, our performance on most
images with fewer than 20 triplets is slightly better than
transformer. Consistently, we calculate the average Recalls
of various methods on images with more than 20 labeled
triplets in Tab. 3. In this table, we find that transformer can
outperform our method with a little margin on R@100 when
evaluated on images with more triplets. Thus, we evaluate
our model with more queries (e.g. 800), and its performance
on R@100 is quite better.
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(c) The performance on Recall@50.
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(d) The performance on Recall@100.

Figure 6. The performance of our model and transformer.
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(a) The performance on mean Recall@100.
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Figure 7. The performance of our model and transformer.

E.2. Influence of Object Detector

A straightforward idea is investigating how to set the
magnitude of queries if both the paradigms achieve simi-
lar performance. Thus, in this part, we compare the trans-
former [14] with vanilla Sparse R-CNN [10] as the object
detector to our method on VG [2].

In Tab. 4, we can see that our model with 800 queries can
be comparable with the transformer based on vanilla Sparse
R-CNN on Recalls. However, our model performs better
than transformer on mean Recalls, thereby demonstrating
the effectiveness of our relation modeling. Therefore, it is

meaningful to design specific structures directly for relation
features. Although these structures may cost much compu-
tation resources, the sparse modeling on triplets can greatly
alleviate this problem. Moreover, the inference speed of our
model is faster than that of the dense detector.

Then, we select AP50 for evaluation because all the met-
rics of SGG utilize an IoU of 0.5 for distinguishing true
positive and false positive samples. The performance of ob-
ject detection is shown in Tab. 5. It is obvious that Sparse
R-CNN performs better than Faster R-CNN without addi-
tional context encoder. However, when both of them are



Model Object Detector R@20 R@100 mR@20 mR@100 Speed

Transformer† [14] Sparse R-CNN [10] 26.1 38.2 5.7 9.3 0.37
Transformer†LA [14] Sparse R-CNN [10] 17.1 27.2 10.5 17.3 0.37

Ours* - 26.1 38.4 6.2 10.3 0.32
Ours*LA - 18.2 27.3 13.7 22.5 0.32

Table 4. Comparisons with the state-of-the-art methods at SGDet on Visual Genome (VG). * refers to the 800 queries. LA: logit adjust-
ment [7]. The reimplemented model is denoted by the superscript †.

Object Detector Context Encoder AP50

Faster R-CNN [8] - 28.1
Sparse R-CNN [10] - 29.0

Faster R-CNN [8] Transformer [14] 30.2
Sparse R-CNN [10] Transformer [14] 30.4

Table 5. The performance (%) of object detectors on VG [2].

equipped with transformer encoder and used for relation de-
tection, their performance is similar. We speculate that the
setting in [12] forcing the object detector to provide only
few high-confident candidates narrows the performance gap
between these models. Furthermore, Sparse R-CNN itself
depend heavily on context information, and its performance
may be similar to that of Faster R-CNN under the same case
of utilizing the context.

Consistent with Appendix E.1, we also investigate the
detailed performance of multi-stage model based on trans-
former and Sparse R-CNN, and conduct the same compari-
son with our method with 800 queries. As shown in Fig. 7,
the difference between the two method is quite similar with
that in Fig. 6, which suggests the performance gain of our
method is mostly from the images with few annotations.

F. Societal Impact
Scene graph generation (SGG) is a traditional visual

scene understanding task and we adopt the open datasets,
Visual Genome [2] and OpenImage [4], so there is no neg-
ative social impact if the methods in the area of SGG are
used properly.

G. Limitation
Our method adopts a unified framework for SGG with

many fresh operations such as dynamic convolution. There-
fore, compared with the previous multi-stage methods, it
requires more computation resources for training. 8 RTX
2080ti with 11G GPU memory are necessary for our model
with 300 queries. As for training the model with more than
300 queries (e.g. 800 queries), 8 Tesla V100 with 32G GPU
memory are needed. However, the testing phase only needs
1 RTX 2080ti.
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