A. Confidence Intervals

We provide confidence intervals for the overall model results on Winoground. We divided the dataset into 4 groups of equal size to get 4 scores for each model and score-type, and used Student's t-distribution to compute the confidence intervals.

Model	Text		Image		Group	
MTurk Human	89.50	[88.58,90.42]	88.50	[85.74,91.26]	85.50	[82.45,88.55]
VinVL	37.75	[29.81,45.69]	17.75	[12.03,23.47]	14.50	[10.71, 18.29]
UNITER _{large}	38.00	[32.05,43.95]	14.00	[9.89,18.11]	10.50	[8.45,12.55]
UNITER _{base}	32.25	[24.10, 40.40]	13.25	[7.53,18.97]	10.00	[7.09,12.91]
ViLLA _{large}	37.00	[31.34,42.66]	13.25	[5.63,20.87]	11.00	[5.97,16.03]
ViLLA _{base}	30.00	[21.99, 38.01]	12.00	[8.56,15.44]	8.00	[4.56,11.44]
VisualBERT	15.50	[12.74,18.26]	2.50	[0.45,4.55]	1.50	[0.00,3.55]
ViLT	34.75	[27.47,42.03]	14.00	[11.09,16.91]	9.25	[6.53,11.97]
LXMERT	19.25	[13.83,24.67]	7.00	[3.56,10.44]	4.00	[0.56,7.44]
ViLBERT	23.75	[15.19, 32.31]	7.25	[5.25,9.25]	4.75	[1.47,8.03]
UniT	19.50	[16.19,22.81]	6.25	[2.07,10.43]	4.00	[0.56,7.44]
CLIP	30.75	[21.90, 39.60]	10.50	[5.91,15.09]	8.00	[4.56,11.44]
VSE++ _{COCO} (ResNet)	22.75	[19.47, 26.03]	8.00	[5.09,10.91]	4.00	[2.70,5.30]
VSE++ _{COCO} (VGG)	18.75	[13.82,23.68]	5.50	[2.74,8.26]	3.50	[0.74,6.26]
VSE++ $_{Flickr30k}$ (ResNet)	20.00	[15.32,24.68]	5.00	[0.00,10.51]	2.75	[0.03,5.47]
VSE++ _{Flickr30k} (VGG)	19.75	[14.49, 25.01]	6.25	[1.16,11.34]	4.50	[1.45,7.55]
VSRN _{COCO}	17.50	[11.62,23.38]	7.00	[4.09,9.91]	3.75	[2.23,5.27]
$VSRN_{Flickr30k}$	20.00	[16.10,23.90]	5.00	[2.75,7.25]	3.50	[0.00,7.29]

Table 1. 95% confidence intervals for the aggregate results on Winoground. Results above chance are shown in **bold**.

B. Impact of Pretraining Data Size and Model Type on Model Performance

Correlations between pretraining data size and model performance are highly significant in every case and the numbers are shown in the main paper. We show plots in the figures below. Most of the single-stream models perform slightly above chance on the text score. CLIP is the only dual-stream model which performs above chance, and it has drastically more training data than all other models.

Figure 1. Graphs of the model performance on Winoground for each model by the number of pretraining images (left) and pretraining captions (right). \diamond = dual-stream RNNs, \Box = dual-stream transformers, \bigcirc = single-stream transformers. CLIP is removed as an outlier with 400 million pretraining images and captions. Backbone pretraining data is not included.

Figure 2. Graphs of the model performance on Winoground for each model by the number of pretraining images (left) and pretraining captions (right). This is a finer-grained version of Tab. 1, with model names instead of grouping by architecture; we again exclude CLIP as its pretraining dataset size is an outlier. We only show the best VSE++ and VSRN configurations and do not show group scores due to clutter issues.

C. Linguistic Tag Breakdown

This section reports every different swap-dependent linguistic tag that our annotators gave examples. Many of these fine-grained linguistic tags are used for multiple examples, although some tags are only used once in the dataset.

Tag	Fine-Grained Tag	Example
	Noun Phrase, Determiner-Numeral	[a person] carrying [more than one flotation device]
	Noun Phrase	[a person] holding up [books]
011	Determiner-Numeral, Noun Phrase	[a lightbulb] surrounding [some plants]
Object	Noun Phrase, Determiner-Possessive	[a deer's nose] is resting on [a child's hand]
	Pronoun Noun Phrase	the person wears a bat but fit doesn't
	Determiner-Numeral Phrase	[me] is in a boat and [almost everyone] is swimming
	Pronoun, Verb-Intransitive	[it] ran away while [they] pursued
	Noun	more [bicycles] than [cars]
	Adjective-Age	[an older] person blocking [a vounger] person
	Scope, Preposition	racing [over] it []
	Verb-Intransitive, Verb-Transitive Phrase	a kid [threw a basketball] then [jumped]
	Verb-Intransitive, Adjective-Manner	the younger person is [making noise] while the other is [silent]
	Negation, Noun Phrase, Preposition Phrase	a person [with long braids] is exercising in front of a person [without braids]
	Noun Phrase Adjective-Animate	[out][swam]2 the person in the red swimcap [[21]] the one on the left is [sad] and the other is [hanny]
	Adjective-Size	the fuller person hues the [shoter) person
	Determiner-Possessive	the [person's] leg is on the [dog's] torso
	Adjective-Texture	[smooth] shoes are on a [soft] floor
	Adjective-Color	painting the [white] wall [red]
	Scope	[getting] a horse [] wet
	Preposition Phrase	hat lat the bottom j and pointy (on top)
	Adjective-Height	a failed person versing all standing next to a [Shorter] person
	Verb-Intransitive Phrase, Preposition	the gesture of the person [sitting down] is supporting the understanding of the person [standing up]
	Verb-Intransitive, Determiner-Numeral	some people are [standing] but more are [sitting]
	Determiner-Numeral	[one]1 person[]2 wearing [two]1 scarf[s]2
	Adjective-Weight	the larger ball is [lighter] and the smaller one is [heavier]
	Verb-Intransitive, Noun	the dog is [standing] and the person is [swimming]
	Scope Relative Clause	the person on the left is [crying sadiy] while the one on the right is [smilling happily]
	Adjective-Speed	a refer [who is wearing one pairs] having a point scored against them by another reference [] using a wheelenan the train is [still] while the person is [moving fast]
	Adverb-Temporal	a person is drinking [now] and eating [later]
	Adverb-Spatial	the car is sitting [upside down] while the person is standing [rightside up]
Relation	Adjective-Shape	the [round] table has a [square] base
	Noun, Adjective-Color	Young person playing baseball with a [blue] bat and [green] ball
	Verb-Transitive	the person with the ponytail [buys] stuff and other [packs] it
	Scope, Verb-Transitive Scope, Preposition Phrase	E child in front figs sontcame
	Adjective-Temperature	a [hot] drink on a [cold] day
	Adjective-Temporal	the [first] vowel is E and the [last] consonant is N
	Scope, Conjunction	a person spraying water on [someone else]1 [and]2 a person on a bike []2 []1
	Scope, Conjunction Phrase	A child [] riding a bike [and an adult]
	Adjective-Manner Phrase	someone [with an apple] is nurl by a tree [] two people wearing clothes of [different] colors are on [the same] side of the tennis net
	Verb-Intransitive	a person (stands) and a dog [sits]
	Adjective-Animate	[toy] cat with [real] baby
	Adverb-Spatial Phrase	the sailboat sails [close] but the beach is [far away]
	Scope, Adjective-Texture	A [] small animal with [curled] hair
	Adverb-Animate	someone talks on the phone [angrily] while another person sits [happily]
	Aujective-ivialiner Verb_Transitive Phrase	(poor) (unfortunate) people they [drank water] then they [worked out]
	Adjective-Color (3-way swap)	The [red] \rightarrow [red] book is above the [vellow] \rightarrow [blue] book and below the [blue] \rightarrow [red] book
	Scope, Adjective-Manner	[] living things [drinking]
	Preposition	seat numbers increasing from [right] to [left]
	Verb-Intransitive Phrase	a cat is [stretching] and a person is [lying down]
	Sentence	[the coffee is poured] before [it is ground]
	Adjective-Speed Fillase, vero-Intransitive	A [left] hand nulls a glove onto a [right] hand
	Negation, Scope	The functed birth has an loopened case door
	Verb-Transitive Phrase, Verb-Intransitive, Preposition Phrase	the dog [bite]1s []2 what someone would normally [wear]1 [as a hat]2
	Altered POS	[watchling the [present]
	Verb-Transitive, Noun	someone []1 on [the ground]2 [is]1 spraying water towards [a vehicle]2
	Scope, Altered POS, Verb-Intransitive, Verb-Transitive	[walking]1 someone []1 [cut]2 [lines]2 into green plants
-	Noun, Adjective-Size	the [person]1 is too [big]2 for the [small]2 [door]1
Both	Noun, Verb-Intransitive	a [dog sitting] on a couch with a [person lying] on the floor
	Scope, Noun, Preposition	[] a person [near]] [Water]2 using a []2 lasso a person wearing a [bear1] mask []2 in blue on the left hand side of a person wearing a [panda]1 mask [with classes]2 in pink
	Scope, Preposition Phrase, Adjective-Color	[darker]1 things [12 become [light]1 [in stripes]2
	Altered POS, Determiner-Numeral	[one] ear that some [donkey] is whispering a secret into

Table 2. Examples showcasing the full linguistic (swap-dependent) tag breakdown.

D. Heatmaps for the Word-Region Alignment Models

We provide heatmaps for models that were trained with a word-region alignment objective: UNITER, ViLLA and ViLT. See the main text for ViLT heatmaps.

Figure 3. Word-region alignment scores between the image and text features for ViLLA base on examples from Winoground.

Figure 4. Word-region alignment scores between the image and text features for UNITER_{base} on examples from Winoground.

E. Mechanical Turk Interface

In order to participate, crowdworkers needed to satisfy several criteria: be an English speaker, have 98% previous HIT approval, have completed 1000 previous HITs, and pass the onboarding test. The onboarding test used the same interface as the actual task. It consisted of ten image-caption match questions, with images and captions that are independent from the actual Winoground dataset. If they made one mistake, a pop-up asked them if they were sure, and they would be allowed to select whether there was a match or not again. If they made any additional mistakes during onboarding, they were disqualified.

Figure 5. The Amazon Mechanical Turk validation interface.

F. Ethical Considerations

A key consideration while designing Winoground centered on how the expert annotators would describe the people contained in the images. We avoided using gendered terms (*e.g.* using "person" in place of "woman" or "man") in our captions and did not include any swaps between pairs of captions based on gender, race or ethnicity (*e.g.* "[the man] hands a water to [the woman]"). We recognize that, barring direct access to the people in the images, we would be merely making a guess at a person's identity based on our own cultural norms and experiences.

In addition, we encouraged the expert annotators to find images that represent a variety of people across the dimensions of perceived race, gender, disability, *etc.*. We gathered the Getty Images metadata (title and short alt text-like description) and searched them for specific words as a rough proxy for gender representation. The relevant words are either words referring to women (*e.g.* girl, her), words referring to men (*e.g.* boy, him) or words that are gender-neutral (*e.g.* them, themself). Using the Getty Images metadata corresponding to the 800 images in Winoground, 371 images have corresponding metadata that contained at least one word from the lists we created. Using this metadata for these 371 images, we estimate that 152 images only contain women, 123 images only contain men, 22 images only contain people without gender descriptors, and the remaining 74 images contain people described by multiple genders. This serves only as a rough estimate as much of the metadata contain words referring to people that are inherently non-gendered (*e.g.* scuba diver, friend, *etc.*) and because the relevant gendered words we found are themselves subject to the assumptions of those who wrote the titles and captions.