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In this supplemental, we first provide more quantitative
experiments to analyze our model design. Specifically, we
investigate how the parameter settings of R in the SOS mod-
ule and P in the OCOR module affect the performance in
Table 1 and Table 2, respectively. According to Table 1 and
Table 2, we set R to 4 and P to 8 in our implementation. We
also evaluate the backbone choices for our model in Table
3. Note that even if we use the ResNet-50 backbone to ini-
tialize our model, it can still achieve the best performance
against other state-of-the-art methods on the SA-SOR and
SOR metrics (refer to Table 1 in the main submission for
comparison). We choose the Swin-L backbone as it pro-
vides the best performance.

We then provide more qualitative comparisons of our
method vs. existing saliency ranking methods (RSDNet [4],
ASSR [8], and IRSR [7]) and the adapted baseline methods
(BlendMask [2], CenterMask [5], SOLOv2 [9], Cascade R-
CNN [1], CBNetv2 [6], and QueryInst [3]) in Figure 1, 2, 3,
4, 5, and 6, respectively. These images cover diverse daily
scenarios and the comparisons generally verify the superi-
ority of our method.

Table 1. Evaluation on different parameter settings for R in SOS
module.

Settings of S SA-SOR ↑ SOR↑ MAE↓

R = 16 0.724 0.895 0.084
R = 8 0.729 0.890 0.082
R = 2 0.735 0.899 0.081

R = 4 (Ours) 0.738 0.904 0.078
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Table 2. Evaluation on different parameter settings for P in OCOR
module.

Settings of P SA-SOR ↑ SOR↑ MAE↓

P = 1 0.727 0.888 0.081
P = 2 0.731 0.892 0.081
P = 4 0.736 0.900 0.080
P = 16 0.737 0.905 0.080

P = 8 (Ours) 0.738 0.904 0.078

Table 3. Evaluation on different backbone choices for our model.

Backbone SA-SOR ↑ SOR↑ MAE↓

ResNet-50 0.723 0.877 0.085
ResNet-101 0.727 0.885 0.084

Swin-T 0.726 0.890 0.084
Swin-B 0.730 0.896 0.080

Swin-L (Ours) 0.738 0.904 0.078
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Image RSDNet [4] BlendMask [2] CenterMask [5] SOLOv2 [9] Cascade R-CNN [1]

CBNetv2 [6] QueryInst [3] ASSR [8] IRSR [7] Ours Ground Truth
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Figure 1. More visual comparison of our method to existing saliency ranking methods and adapted baseline methods.
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Figure 2. More visual comparison of our method to existing saliency ranking methods and adapted baseline methods.



Image RSDNet [4] BlendMask [2] CenterMask [5] SOLOv2 [9] Cascade R-CNN [1]

CBNetv2 [6] QueryInst [3] ASSR [8] IRSR [7] Ours Ground Truth

Image RSDNet [4] BlendMask [2] CenterMask [5] SOLOv2 [9] Cascade R-CNN [1]

CBNetv2 [6] QueryInst [3] ASSR [8] IRSR [7] Ours Ground Truth

Image RSDNet [4] BlendMask [2] CenterMask [5] SOLOv2 [9] Cascade R-CNN [1]

CBNetv2 [6] QueryInst [3] ASSR [8] IRSR [7] Ours Ground Truth

Image RSDNet [4] BlendMask [2] CenterMask [5] SOLOv2 [9] Cascade R-CNN [1]

CBNetv2 [6] QueryInst [3] ASSR [8] IRSR [7] Ours Ground Truth

Figure 3. More visual comparison of our method to existing saliency ranking methods and adapted baseline methods.



Image RSDNet [4] BlendMask [2] CenterMask [5] SOLOv2 [9] Cascade R-CNN [1]

CBNetv2 [6] QueryInst [3] ASSR [8] IRSR [7] Ours Ground Truth

Image RSDNet [4] BlendMask [2] CenterMask [5] SOLOv2 [9] Cascade R-CNN [1]

CBNetv2 [6] QueryInst [3] ASSR [8] IRSR [7] Ours Ground Truth

Image RSDNet [4] BlendMask [2] CenterMask [5] SOLOv2 [9] Cascade R-CNN [1]

CBNetv2 [6] QueryInst [3] ASSR [8] IRSR [7] Ours Ground Truth

Image RSDNet [4] BlendMask [2] CenterMask [5] SOLOv2 [9] Cascade R-CNN [1]

CBNetv2 [6] QueryInst [3] ASSR [8] IRSR [7] Ours Ground Truth

Figure 4. More visual comparison of our method to existing saliency ranking methods and adapted baseline methods.
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Figure 5. More visual comparison of our method to existing saliency ranking methods and adapted baseline methods.
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Figure 6. More visual comparison of our method to existing saliency ranking methods and adapted baseline methods.
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