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In this document, we present supporting material for the
paper “Bring Evanescent Representations to Life in Life-
long Class Incremental Learning”. In Section 1, we ex-
plicate the probabilistic interpretation underlying our ap-
proach. Then, in section 2 we introduce implementation
details of the models and optimisation methods. Finally, we
report some additional results and ablation studies in Sec-
tion 3.

1. Theoretical Motivation
We explore dynamics of incrementally learned classi-

fiers using a probabilistic approach. To elucidate the dy-
namics of models used for CIL, we factorise the probability
p(C ∈ C|F ∈ F) as follows

p(C ∈ C|F ∈ F) ∝PA −PB
PC

, (1)

where:

• F ∈ F = Ft ∪ Fold is the random variable taking values
from the set of feature representations Ft learned at step
t on the available dataset Dt and from Fold = {Ft′}t−1t′=0

• C ∈ C = Ct ∪ Cold is a random variable of semantic
(class) representations, where Cold = {Ct′}t−1t′=0

In Table 1 we explicate each individual term within the fac-
torisation in 1, i.e., PC , PA := P1 + P2 + P3 + P4, and
PB := P12 + P13 + P14 + P24 + P34, and provide an
interpretation for each of their constituents.

2. Implementation Details
2.1. Design of Representation Drift Models

2.1.1 Modeling Feature Drift

GM: We use a simple and lightweight multilayer percep-
tron to implement Γγn

t
: F0

t → Fnt , composed of two fully-
connected (FC) layers and a ReLU activation between them

*Researched during internship at Samsung Research UK

(Table 2). Input and output variables of Γγn
t

correspond to
sets ofB feature vectors of dimensionD (number of feature
channels at the output of the feature extractor, which is set
to 512 in all experiments), both arranged in a B × D ma-
trix. In addition, the number of output channels of the first
FC layer is set to 2 ∗D and B is set equal to the cardinality
of Dt (i.e., the available training set at step t).
VM: We use a lightweight conditional variational auto-
encoder [15] to implement Γγn

t
. The task of the cVAE is

to learn a generative function of feature representations of
training samples at stage n (Fnt ), conditioned on the rep-
resentations of the same samples at the beginning of the
current incremental step (F0

t ). The encoder and decoders
are composed of two FC layers each. We refer to Table 3
for a more detailed description of the employed architec-
tures. We perform conditioning in input and latent spaces
by concatenation along the channel dimension. Input, out-
put and conditioning variables of Γγn

t
correspond to sets of

B feature vectors of dimension D, all arranged in B × D
matrices. We set B equal to the cardinality of Dt.

2.1.2 Modeling Semantic Drift

GM: We use a simple and lightweight multilayer percep-
tron to implement Ψψn

t
: Fn0 → Πt,0

old, composed of two FC
layers and a ReLU activation between them (Table 2). Input
and output variables correspond, respectively, to sets of B
andCtold feature vectors of dimensionD, arranged inD×B
and D × Ctold matrices, where Ctold denotes the number of
past classes present at the current incremental step t > 0
and D the number of feature channels at the output of the
feature extractor. The number of output channels of the first
FC layer is set to 2 ∗B and B is set equal to the cardinality
of Dt.
VM: We use a lightweight conditional variational auto-
encoder to implement Ψψn

t
. The task of the cVAE is to

learn a generative function of feature representations of
old classes F0

old (whose distribution is approximated as
p(F0

old; Πt,0
old) ∼ N (πc, σc)), conditioned on those of new

classes F0
t (which can be extracted from the available train-



Table 1: Factorisation of p(C|F) in CIL, where · is used to indicate multiplication of probability functions.

Term Distribution Interpretation Model

PC p(Fold,Ft) Distribution of features shared among old and new classes. p(Fold|Ft) · p(Ft)

P1 p(Ct,Ft) Distribution of features for new classes. p(Ct|Ft) · p(Ft)

P2 p(Ct,Fold) Distribution of features of old classes for new classes. p(Ct|Fold)· (Fold)

P3 p(Cold,Ft) Distribution of features of new classes for old classes. p(Cold|Ft) · p(Ft)

P4 p(Cold,Fold) Distribution of features for old classes. p(Cold|Fold) · p(Fold)

P12 p(Ct,Ft,Fold) Distribution of shared features for new classes. p(Ct|Ft,Fold) · p(Ft|Fold) · p(Fold)

P13 p(Ct, Cold,Ft) Distribution of features of new classes for new and old classes. p(Ct|Cold,Ft) · p(Cold|Ft) · p(Ft)

P14 p(Cold,Ft,Fold) Distribution of shared features for old classes. p(Cold|Ft,Fold) · p(Ft|Fold) · p(Fold)

P24 p(Ct, Cold,Fold) Distribution of features of old classes for new and old classes. p(Ct|Cold,Fold) · p(Cold|Fold) · p(Fold)

P34 p(Cold,Fold,Ft) Distribution of shared features for old classes. p(Cold|Ft,Fold) · p(Ft|Fold) · p(Fold)

Table 2: Architecture of GM identified by MLP.

Feature Drift Semantic Drift

Input Operator Output Input Operator Output

B ×D FC layer B × 2D D × B FC layer D × 2B

B × 2D FC layer B ×D D × 2B FC layer D × C

We setD = 512 andB = |Dt|

Table 3: Architecture of VM identified by conditional VAE.

Feature Drift Semantic Drift

Input Operator Output Input Operator Output

E
nc

od
er B × 2D FC layer B × 4D D × (C+B) FC layer D × 2(C+B)

B × 4D FC layer B × 2D D × 2(C+B) FC layer D × 2

D
ec

od
er B × 2D FC layer B × 4D D × (1+B) FC layer D × 2(1+B)

B × 4D FC layer B × 2D D × 2(1+B) FC layer D × C

We setD = 512,B = |Dt| and C = |Ctold|

ing set Dt). Each encoder and decoder is composed of two
FC layers. Once more, we refer to Table 3 for further de-
tails about the employed architectures. We perform condi-
tioning in input and latent spaces by concatenation along
the channel dimension. Input and output variables of Γγn

t

correspond to sets Ctold of feature vectors of dimension D,
arranged in D × Ctold matrices. The conditioning variable
is a set of B feature vectors of dimension D, arranged in
D ×B matrices. We set B equal to the cardinality of Dt.

2.2. Training Details

2.2.1 Modeling Feature Drift

GM: We learn Γγn
t

by minimising the mean squared error
between Γγn

t
(F0

t ) and Fnt , i.e., Ltf = ||Γγn
t

(F0
t )−Fnt ||22.

VM: We optimise the variational model (conditional VAE)
following the objective proposed in [20]. The learning
objective is composed of a reconstruction constraint
and a regularisation term measuring the KL divergence

between the posterior distribution modeled by the en-
coder and the standard normal prior, plus an additional
term to maximise the mutual information between input
and latent variables. Thus, the objective is of the form
Ltf = βLtrec,f + (1− α)Ltkl,f + (α− λinfo − 1)Ltinfo,f

1,
where Ltrec,f is the reconstruction loss, Ltkl,f is the KL
divergence loss and Ltinfo,f is the loss of the InfoVAE. We
set β = 1e1 in all experiments, α = −1e1 and λinfo = 1e1
on CIFAR100, and α = −1e2 and λinfo = 1e2 on
TinyImageNet and CUB200.

2.2.2 Modeling Semantic Drift

GM: We learn Ψψn
t

by minimising the mean
squared error between Ψψn

t
(F0

t ) and Πt,0
old, i.e.,

Lts = ||Ψψn
t

(F0
t )−Πt,0

old||22.
VM: We optimise the variational model (conditional
VAE) by maximizing the ELBO (Evidence Lower BOund)
[7]. The learning objective is thus composed of a recon-
struction constraint and a regularisation term measuring
the KL divergence between the posterior distribution
modeled by the encoder and the standard normal prior,
i.e., Lts = Ltrec,s + λkld,sL

t
kd,s. We set λkd,s = 1 in all

experiments.

2.2.3 Model Fusion

We experimentally finetuned the values of λfus and λcorr
for each drift model configuration, dataset and incremental
setup. In particular, we perform gridsearch such that
λfus, λcorr ∈ {1e2, 1e1, 1e0, 1e − 1, 1e − 2, 1e − 3, 1e −
4, 1e− 5} and select the best value combination.

In all the aforementioned setups, we employ the Adam
optimiser [6] with fixed learning rate η, and train until con-
vergence by performing early-stopping, that is, the model is

1We base our code on the implementation of InfoVAE provided on
https://github.com/AntixK/PyTorch-VAE



trained until the loss function does not change for a prede-
fined constant number of steps τ = 25. We experimentally
finetuned the value of learning rate η ∈ {1e−3, 1e−4, 1e−
5} for each drift model configuration, dataset and incremen-
tal setup.

Finally, we apply weight normalisation [14] to Ψψn
t

(both for GM and VM implementations) and spectral nor-
malisation [11] to weights of Γγn

t
(both for GM and VM

implementations), since we observed an improvement in ro-
bustness of training convergence.

2.3. Competitors

We compare our approach with several CIL methods
storing exemplars of old classes (EEIL [1], iCarl [13],
UCIR [5]) and other SotA exemplar-free methods
(EWC [8], LwF [10], LwM [4], PASS [21], SDC [19]).
All methods are evaluated with the ResNet18 image clas-
sification model and batch size of 64 [21]. We perform
gridsearch over key hyperparemeters of [4, 1, 13, 5, 8, 10]
and report the best results2. As for exemplar-based meth-
ods [4, 1, 13, 5], we store 20 samples with herd selection
[5, 13]. In addition, we use the original code of PASS [21].
Finally, we evaluate the SDC [19] method by employ-
ing the prototype drift compensation proposed in [19] to
update prototypes of past classes. In particular, we em-
ploy the original code of [19] to evaluate and compensate
for the feature drift of old-class prototypes (i.e., in place
of the proposed semantic and feature representation drift
models), and we use the estimated up-to-date representa-
tions Πt,n

old by SDC [19] to approximate feature distribution
of old classes with a parametrized Gaussian model, i.e.,
p(F ∈ Fnold;πc ∈ Πt,n

old) ∼ N (πc, σc). Computation of σc
was explained in the main text.

3. Experimental Evaluation
3.1. Additional Comparison with State-of-the-Art

Evaluation Metrics: We evaluate the performance of dif-
ferent methods using the standard top-1 accuracy. Firstly,
we resort to a per-step metric [21] (Table 4 and Fig 1), de-
fined as the average top-1 classification accuracy over all
classes observed up to the current incremental step k

āk =
1

|C0:k|
∑
c∈C0:k

akc , C0:k=

k⋃
t=0

Ct, (2)

where akc denotes the accuracy for class c attained at step k.
We additionally make use of the step-average incremental
accuracy measure proposed in [13] (Table 4), defined as

âk =
1

k + 1

k∑
k′=0

āk
′

(3)

2We used the code from https://github.com/mmasana/
FACIL to perform gridsearch.

where we take into account the evolution of the per-step
accuracy, as computed in Eq. 2, up to the current step k.

Finally, we report a measure of forgetting [2] computed
for each past class c at step t > 0 by

f ct = max
k<t

(ack − act), ∀c ∈
⋃
k<t

Ck (4)

where ack denotes the top-1 accuracy for class c attained
at the step k < t. We then compute the class-wise aver-
age of forgetting measures over all past classes at each step
(Fig. 2), as well as the task-wise average at the end of in-
cremental training (Fig. 3) (i.e., we compute averages of
forgetting measures at the final step over classes belonging
to the same task).
Datasets. We evaluate our approach on multiple standard
CIL benchmarks, that is, CIFAR100 [9], TinyImageNet [12]
and CUB200-2011 [17] datasets. In addition, we provide
some results on the large-scale ImageNet-Subset bench-
mark [3]. We devise 3 class-incremental protocols; first,
the training is performed on half of the available semantic
classes (except for one setup on CIFAR100, where only 40
classes are selected as the first task); then, the remaining
class set is evenly divided into respectively 5, 10 or 20 in-
cremental steps, each with an equal number of new classes
being introduced. Class order is selected randomly and then
fixed at every class split.
Comparisons: We first compare the proposed approach us-
ing the per-step top-1 accuracy (Eq. 2) with the vanilla and
state-of-the-art (SotA) CIL methods (Fig. 1). We observe
how the proposed approach provides improved classifica-
tion accuracy w.r.t. some exemplar-based methods [4, 1, 13,
5] and some exemplar-free approaches [8, 10, 19, 21], at-
taining SotA performance on CIL without stored exemplars.

To validate robustness of our approach w.r.t. evalua-
tion metric, in Table 4 we report additional results in the
form of the step-average incremental accuracy proposed
in [13] (Eq. 3). We notice that we still outperform most
of the competitors. This holds also for the large-scale
ImageNet-Subset benchmark, where our approach attains
better performance than SotA exemplar-free methods and
some exemplar-based frameworks, demonstrating resilience
to change of data settings. In Table 4 we further report
evaluation results on Cifar100 when a modified 32-layers
ResNet [13] is employed as classification network. Once
more, we observe that we surpass PASS [21] and SDC [19]
exemplar-free SotA competitors by a large margin, espe-
cially when 10 incremental steps are performed. This indi-
cates robustness to change of classification backbone.

Furthermore, we evaluate the CIL methods considered
by computing a measure of forgetting (Eq. 4). In Fig. 2,
we analyse how the class-wise average forgetting evolves
throughout incremental training when different methods are
employed. We observe that the proposed CIL approach



Table 4: acc1:acc2 top-1 accuracy (%) where acc1 is the class-wise average accuracy (Eq. 2) and acc2 is the class- and step-
wise average accuracy (Eq. 3). Both measures are computed at the end of the last incremental step.

CIFAR100-Res18 CIFAR100-ResNet32 [13] Imagenet-Subset
Method 5 Steps 10 Steps 20 Steps 5 Steps 10 Steps 10 Steps 20 Steps

iCarl [13] 54.1:64.8 51.1:62.3 41.2:56.3 -:- -:- 54.7:68.6 48.7:63.9
UCIR [5] 51.1:61.4 46.0:57.5 38.3:51.3 -:63.4∗ -:60.2∗ 57.5:66.6 45.5:57.3
PASS [21] 56.5:65.1 47.6:60.8 47.3:58.7 51.1:58.9 44.4:53.2 58.1:68.2 47.2:61.4
SDC [19] 57.6:66.2 52.3:62.7 48.8:59.2 51.4:59.4 47.0:54.4 58.6:68.6 47.1:61.0
DER [18]∗ -:73.2 -:72.8 -:- -:68.5 -:67.1 74.9:78.2 -:-

Feat. Drift (GM-MLP) 57.9:66.3 54.5:63.7 50.6:61.2 53.1:60.2 50.9:58.3 59.1:68.1 50.6:62.6
Sem. Drift (GM-MLP) 58.3:66.0 54.2:63.4 50.9:60.8 53.3:60.3 51.2:58.4 59.3:69.2 50.4:63.4
Fusion (GM-MLP) 59.4:66.9 56.0:64.8 51.9:61.5 53.9:60.9 52.0:58.5 59.7:69.3 51.5:63.6

Feat. Drift (VM-VAE) 57.0:65.8 53.7:63.0 51.1:60.9 53.8:60.2 50.9:58.3 59.3:68.8 50.9:62.8
Sem. Drift (VM-VAE) 58.2:66.7 55.4:63.3 51.7:61.6 54.1:60.9 51.3:58.9 59.5:69.3 51.0:63.1
Fusion (VM-VAE) 58.7:66.8 56.9:65.1 51.8:61.6 54.2:61.3 52.1:59.1 60.2:70.0 51.6:63.7

∗ Numerical values were directly taken from [18].

based on representation drift modelling mitigates forgetting
more efficiently than the majority of the competitors (only
iCARL [13] shows superior performance). Nonetheless, we
remark that iCARL [13] leverages replay data from the past
to address forgetting. Furthermore, iCARL [13] yields a
lower or comparable classification accuracy with respect to
our approach, suggesting that a focus of iCARL [13] on pre-
serving past knowledge (i.e., stability) is accompanied by a
less efficient learning of novel classes (i.e., plasticity).

Finally, we propose an analysis using task forgetting
computed at the end of incremental training (Fig. 3). We
notice how our CIL method causes overall less forgetting
than most of the competing approaches, providing an im-
proved performance equally shared among all tasks. This
is especially noticeable when evaluation is performed on
the CUB200 dataset, where even the SotA PASS and SDC
methods induce almost total forgetting of the oldest tasks.

3.2. Additional Ablation Studies

3.2.1 Analysis of Semantic Drift Models

We investigate how our method proposed to model rep-
resentation drifts captures and preserves semantic rela-
tionships between feature representations of old and new
classes. For this purpose, we compute prototypical repre-
sentations of novel classes on the training data available at
an incremental step t, and estimate the revived prototypes of
old categories by modeling semantic and feature drifts (em-
ployed individually or fused). Then, we express inter-class
relationships in the form of Euclidean distance between pro-
totypes of past and new classes, and observe the evolution
of such distance throughout an incremental step t. In par-
ticular, we compute distance values between pairs of class
prototypes at the beginning and at the end of the same incre-
mental step t, and measure their change across the optimi-
sation interval (i.e., in the form of absolute value of the dif-
ference between the estimates performed at the beginning
and end of step t).

In Fig. 4, we report the results of the analysis carried out
when performing 20 incremental training steps on the CI-
FAR100, TinyImageNet and CUB200 datasets. We focus
on analyzing the change of semantic relationship during the
first incremental step (i.e., t = 1). We notice how proto-
types estimated by leveraging the modeled semantic repre-
sentation drift tend to more effectively preserve inter-class
relationships with respect to novel classes. By utilising fea-
ture drift alone, in fact, we notice that class representations
tend to modify their interconnections. Nonetheless, the pro-
posed model fusion allows to better identify and retain inter-
class relationships, whereas keeping prototypes fixed (as in
PASS) causes a greater impairment of inter-class relation-
ships as new representations are learned.

3.2.2 Analysis of Feature Drift Models

We analyse the efficacy of the proposed model in estimating
the feature drift undergone by evanescent representations of
old classes when novel classes are learned. To this end, we
compute the Euclidean and cosine distances between esti-
mated (revived) prototypes of old classes and their refer-
ence (i.e., evanescent) representations at each incremental
step (Fig. 5). We provide per-step class-wise average dis-
tance values (main curves), as well as the maximum and
minimum class values that identify, respectively, the upper
and lower bound of the shaded regions for each setup. Fea-
ture prototypes of old classes are estimated by computing
class wise averages of feature representations over training
data when they are available at an incremental step, which
can then be simply fixed for the rest of the training (as done
in PASS [21]), or can be updated by SDC [19] or by the
proposed drift models. Evanescent prototypical representa-
tions of the same old classes are instead computed over the
test set (unavailable during training).

We replicate the analysis on the CIFAR100, TinyIma-
geNet and CUB200 datasets to provide a robust evalua-
tion. The results show that our proposed methods can track
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Figure 1: Per step average top-1 accuracy (%) on the CIFAR100, CUB200-2011 and TinyImageNet datasets.
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Figure 2: Per step average class forgetting (%) on the CIFAR100, CUB200-2011 and TinyImageNet datasets.



the trajectory of evanescent prototypes more efficiently (in
terms of geometric distances) compared to the SotA PASS
and SDC methods, by modeling the evolution of the repre-
sentations (i.e., feature drift). Furthermore, we observe that
the improved accuracy with respect to the SotA is shared
among the three datasets chosen for evaluation. In particu-
lar, we remark the noticeable improvement experienced on
the CUB200 dataset. Our method, in fact, provides much
lower Euclidean distance between revived and evanescent
representations, whose average value is kept almost con-
stant as incremental training progresses and new classes are
introduced. The same trend can be observed for the co-
sine similarity of the estimated and evanescent representa-
tions, whose value tends to be steady through the incremen-
tal training and much closer to the upper bound when our
method is adopted.

In Fig. 6, we compare the Euclidean distance between
the estimated and evanescent prototypes for different num-
ber of total incremental steps, on the CIFAR100, TinyIma-
geNet and CUB200 datasets, when employing model fusion
with both GM and VM. We observe that our method always
outperforms PASS, in all the evaluation setups. In addition,
we notice that by employing VM to identify representation
drifts, we reach the largest improvement over PASS, which
translates into the revived evanescent representations closer
to their unknown reference version. We also highlight once
more the noticeable accuracy provided by our model for the
20-step setup on the CUB200, where our approach jointly
shows the largest improvement over the SotA accuracy by
∼20%.

Finally, we visualise 2D embeddings of feature vectors
of the first four observed classes as computed by the feature
extractor on the same set of input samples at different incre-
mental steps. To project high-dimensional feature vectors
to a 2D space, we use Isomap [16]. Results are reported
in Fig. 8 for the CIFAR100, TinyImageNet and CUB200
datasets. We observe that our proposed method allows to
estimate revived prototypical representations that tend to be
projected closer to their evanescent versions compared to
PASS (especially on the CIFAR100 and CUB200 bench-
marks). This shows that we can approximate the trajectory
of evanescent representations of old classes, without hav-
ing access to training data of such categories, by modeling
representation drift.

3.2.3 Analysing How Learned Evanescent Representa-
tions Affect Classification Accuracy

In this section, we investigate the relationship tying the ac-
curacy of the classification model and the normalised dis-
tance between the revived and evanescent prototypes of old
classes. Normalisation is performed by dividing individual
distances computed for single past classes by the average

distance among all the past classes. We then provide the
average of normalised distance values at each incremental
step. We evaluate the accuracy of the proposed method
when fusing semantic and feature drift models and adopt-
ing GM to identify representation drift, alongside with that
of the SDC and PASS. Results are reported in Fig. 7.

We observe that classification accuracy measured at each
incremental step and distance between the estimated and
evanescent prototypes are negatively correlated, with sim-
ilar trends shared by the different methods being analysed,
across the CIFAR100, TinyImageNet and CUB200 bench-
marks. It is worth noting that our method and SDC display
very similar correlation patterns, whilst the latter reaching
lower accuracy and higher distance values at the final incre-
mental step. Thereby, we argue that our proposed method
yields superior performance compared to the SotA PASS
and SDC by more accurately tracking and modeling evanes-
cent old class prototypes.

3.2.4 Statistical Analyses of Representations

We explore how well the estimated revived prototypes of
old classes exemplify feature representations of samples of
such categories (which are unavailable during training at in-
cremental steps). To this end, we first compute probability
distributions over the set of old classes based on the Eu-
clidean distance between feature representation and class
prototypes by

pF (c) = exp(−||F−πc)||2/ζ)/
∑
j

exp(−||F−πj)||2/ζ),

(5)
where F ∈ Fold is the feature representation of a test sam-
ple of Cold as produced by the current feature extractor,
{πj}j are revived prototypes of Cold and ζ is set to 0.1.

We analyse the change of entropy (H) and cross-entropy
(CE) of pF across incremental steps in Fig. 9. The cross-
entropy is computed w.r.t. to the one-hotted ground-truth
distribution of the labeled input sample corresponding to
F ∈ Fold. In addition, for each old class c ∈ Cold, we com-
pute the mean H and CE of pF , i.e., we average over all F
corresponding to the same c.
We observe that our method provides higher H and smaller
CE compared to PASS, and this trend is shared across CI-
FAR100, TinyImageNet and CUB200. This result suggests
that information capacity of representations learned by our
methods increases along with classification accuracy more
rapidly compared to the SotA as models are incrementally
trained.

To further validate this claim, for each old class c, we
compute the probability distribution over feature represen-



tations of input samples of all past categories, defined by

pc(Fi) = exp(−||Fi−πc)||2/τ)/
∑
j

exp(−||Fj−πc)||2/τ),

(6)
where Fj ∈ Fold are feature representations of test samples
and {πj}j are revived old-class prototypes. In addition, τ is
set to 0.1. In Fig. 9, we report entropy values of pc across
different incremental steps. Once more, we observe that our
method causes entropy of pc to reach higher values com-
pared to PASS, indicating that prototypical representations
revived by our method are more informative than their fixed
counterparts, while still being representative of the corre-
sponding class, as suggested by the lower CE of pF .

3.2.5 Analysis of Learning Curves for Training Repre-
sentation Drift Models

We analyse the learning curves of semantic and feature drift
models. In particular, in Fig. 10, we report the convergence
values achieved by the total loss function used to train drift
models at different epochs across multiple incremental steps
(for the CUB200 dataset and a setup employing 5 incremen-
tal steps). For semantic drift models, we show the results
for the total loss (denoted by Fusion (VAE/MLP)) compris-
ing Ls and Lfus. As for feature drift models, we present
the individual behaviour of the loss Lf denoted by Only
Feat Drift (VAE/MLP) (without aggregating the loss Lfus),
along with combination of the loss functions Lf and Lfus
denoted by Fusion (VAE/MLP).

In the results, we observe that the convergence point sta-
bilises in all the analysed setups as learning progresses dur-
ing each incremental step. This suggests that, as the classifi-
cation model learns representations of new classes through-
out an incremental step, drift models converge to a stable
configuration, in which they can provide a robust estimate
of representation drift. Moreover, we observe that the VMs
(VAE) converge faster than GMs (MLP).
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Figure 3: Per task average forgetting (%) computed at the end of incremental training on the CIFAR100, CUB200-2011 and
TinyImageNet datasets.
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Figure 4: Analysis of normalised distance between estimated prototypes of classes seen at steps t = 0 and t = 1, captured at
the beginning (left) and end (mid) of step t = 1. We report the absolute value of the difference of the two measures (right).
We replicate the analysis for the 20-step incremental setup, over the CIFAR100 (top), TinyImageNet (middle) and CUB200
(bottom) datasets.
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Figure 5: Analysis of average distance between estimated (revived) and evanescent prototypes of old classes.
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Figure 6: Average Euclidean distance between the estimated (revived) and evanescent prototypes of old classes.
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Figure 7: Relationship between top-1 accuracy (%) and normalised Euclidean distance between estimated and evanescent
old-class prototypes. Each point depicts a single training phase, and the decrease in transparency indicates progressively
increasing incremental steps. For each step, accuracy values have been averaged over all classes observed so far, and distances
are averaged over all past classes.
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Figure 8: Feature representations of the first four learned classes (CIFAR100 (top), TinyImageNet (middle) and CUB200
(bottom), 20 incremental steps) extracted from samples of the test set (dots), along with their prototypes computed over
the available training data (squares), over the test data (diamonds) and the estimated prototypes (diamonds). Decrease in
transparency and increase in brightness indicate that representations are extracted at progressively increasing incremental
steps (i.e., at steps 0, 10 and 20).
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(b) TinyImageNet
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Figure 9: Left: average entropy of pc(Fi) = exp(−||Fi−πc)||2/ζ)/
∑
j exp(−||Fj−πc)||2/ζ). Mid-left and mid-right:

entropy and cross-entropy w.r.t. GT of pF (c) = exp(−||F−πc)||2/τ)/
∑
j exp(−||F−πj)||2/τ). Each feature Fj is extracted

from a test image belonging to an old class, and πj are the estimated prototypes of old classes. Right: Top-1 accuracy for the
CIFAR100 (top), TinyImagenet (middle) and CUB200 (bottom) (all models were evaluated for 20 incremental steps).
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Figure 10: Total loss of semantic and feature drift models measured throughout incremental training (CUB200, 5 incremental
steps).


