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In this document, we provide additional details concerning CVPR submission “RGB-Multispectral Registration: Dataset,

Learning Methodology, Evaluation”.

1. Calibration of our trinocular rig

In this section, we detail the calibration procedure needed to gather images and either i) annotate them with accurate

ground-truth depth labels or ii) distill accurate proxy labels.

We define the three cameras of our setup as RGB, MS, and RGB2, with RGB and RGB2 being the two RGB cameras

with identical resolution (WRGB ×HRGB) and MS the multi-spectral lower resolution device (WMS ×HMS). We define

raw images acquired by the RGB, MS, and RGB2 cameras as rgb, ms, and rgb2 respectively.

First of all, we calibrate each camera independently, using the standard calibration procedure from OpenCV based on the

detection of corners on a chessboard pattern. We found out empirically that we could detect corners with standard algorithms

also in our MS images, simply by processing a grayscale image defined as the average across channels. This allows for

straightforward calibration of the MS camera.

Then, following again the standard procedure from OpenCV, we calibrate the RGB − RGB2 stereo system and rectify

images. In this way we obtain rectified images rgb2, rgb
2

2
for the RGB −RGB2 stereo system.

Finally, we calibrate the unbalanced stereo system RGB −MS following the procedure discussed below.

Unbalanced Stereo Rectification. To rectify images acquired by the RGB −MS unbalanced stereo system, we follow

the unbalanced rectification scheme sketched in [1], yielding images that are rectified when brought to the same resolution

by means of up-sampling or down-sampling operations solely.

We denote the camera with the smaller HFOV as j while the other one as i.

{

i = RGB, j = MS if HFOVMS < HFOVRGB

i = MS, j = RGB if HFOVRGB < HFOVMS

(1)

By modifying the intrinsic parameters of i, we simulate a crop and scale change so as to match the HFOV , Aspect Ratio

(AR) and size of j. Then, we compute the rectification transformation baased on these new parameters.

Hence, we compute the new width and height of i, Ŵi and Ĥi, which we use to crop the image with the larger HFOV so

as to match the smaller HFOV one while preserving the aspect ratio

Ŵi = 2 tan
HFOVj

2
fi (2)

Ĥi =
Hj

Wj

Ŵi (3)

Then, we change the intrinsic parameters of i to simulate the crop and resize, and can thus match the resolution of j as

follows:



Setup RGB MS RGB2 RGB −RGB2 RGB −MS

rgb: 4112×3008 ms: 510×254 rgb2: 4112×3008 rgb2: 4112×3008 rgb22: 4112×3008 rgb1: 3222×1605 ms1: 510×254

Figure 1. Rectification example. From left to right: our trinocular rig, rgb, rgb2, and ms raw images acquired by our rig. rgb2, rgb22
rectified balanced stereo pair from of the RGB−RGB2 stereo system. rgb1,ms1 unbalanced rectified stereo pair from of the RGB−MS

stereo system.

Âi =







f ix ·
Wj

Ŵi
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Then, we estimate the rectification transformation as we would have two cameras of height Hj and width Wj , finding the

new intrinsics and rotations to map the initial image plane into the rectified one. As we have estimated the intrinsic matrices

at the resolution of j , we rescale the intrinsic matrix of i with a vertical and horizontal scale factors equal to Ĥi

Hj
and Ŵi

Wj
,

respectively, in order to adjust the focal length and piercing point of the camera.

Finally, we can rectify the unbalanced pair obtaining two rectified images rgb1,ms1 for the RGB −MS stereo system.

Fig. 1 shows an example of images before and after the rectification procedures described so far.

2. Disparity Warping

When using RGB2, both during the proxy labels creation or the ground-truth acquisition, we need to warp the left ground-

truth Disp2 aligned with rgb2 of the RGB − RGB2 stereo system in order to obtain the ground-truth Disp1 aligned with

the rgb1 of the RGB −MS stereo system.

We know that the rectification transformation is only a change of intrinsic parameters and a rotation, thus an homography.

Therefore, we can compute the mapping between pixels of rgb2 of the RGB−RGB2 stereo system, with coordinate (u, v),
and pixels of the left image rgb1 of the RGB −MS stereo system, with coordinate (u′, v′) as:
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where A1, R1 and A2, R2 are the intrinsic and rectification rotation matrix of the camera RGB in the RGB − MS and

RGB −RGB2 stereo systems, respectively.

Once this mapping is known, we can perform a backward warping to obtain Disp1 from Disp2. However, we need to

modify the disparity values according to the 3D rotation and baseline change before warping. Thus, given the disparity map

Disp2, we first transform it into the corresponding depth map D2

D2 =
f2b2

Disp2
(5)

where f2 is the focal length of the rectified rgb2 and b2 is the baseline of the stereo system RGB − RGB2. Then, we

back-project each pixel of rgb2 into the 3D space using D2 and we rotate it, obtaining the pixel in the rgb1 reference frame:
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In this way we can create a depth map D2→1 for which any pixel (u, v) contains the depth value of the corresponding

pixel aligned in the rgb1 reference frame, z′. At this point we perform the backward warping of the depth:

D1 = φ(D2→1) (7)



RGB MS GT Point cloud

Figure 2. Ground Truth Examples. From left to right: RGB image, MS image (mean across channels), ground-truth disparity map

obtained with our acquisition pipeline, point cloud visualization.

where φ is the backward warping operation that use the mapping defined at Eq. 4 and D1 is the depth map aligned with

rgb1. Finally we transform it to the ground disparity map of rgb1 as:

Disp1 =
f1b1

D1

(8)

where f1 and b1 are the focal length of rgb1 and the baseline of the RGB −MS stereo system.



RGB MS SGM SGM with 2◦ RGB

Figure 3. Unlabeled Examples. From left to right: RGB image, MS image (mean across channels), SGM computed between grayscale

representation of RGB and MS images, SGM computed on two RGB cameras and then warped.

3. Additional Qualitative Results

In this section, we present additional qualitative results. In Fig. 2 we show examples of RGB-MS pairs with available

disparity ground-truths. In Fig. 3 we present examples of the images acquired in uncontrolled environments used to train

our deep architecture by our proxy supervision approach. In particular, in the last two columns we show SGM proxy labels

computed on a RGB image converted into grayscale and a single channel MS image attained by computing the mean across

all channels at each pixel, as well as the SGM proxy labels obtained by two RGB images and then warped. Finally, in Fig.

4 we report additional qualitative results obtained by our network using PSM as backbone and trained also with auxiliary

synthetic data (i.e., the best configuration of Tab. 1 and Tab 2. of the main paper).

4. Qualitative Registration Results.

To provide hints on the registration quality, in Fig. 5 we report qualitatives obtained by using either the disparity predicted

by our network or the ground-truth to warp the low resolution MS image into the high-resolution RGB image. We notice how

the two warped images appear very similar, which vouches for the effectiveness of our cross-modal registration architecture.

5. Additional Implementation Details

We provide here additional details regarding our deep cross-spectral network architecture as well as on the adopted con-

tinuous output representation.

5.1. Stereo Backbones

As for the stereo backbones, we follow the original implementation of two popular architectures: PSM [2] and GWC [3].

For both of them, we follow the idea proposed in [4] to exploit a different combination of feature maps computed at different

spatial resolutions in order to capture both local and global context.

PSM [2]: For the PSM stereo backbone, we use the original deep feature extractor, consisting of Spatial Pyramid Pooling

(SPP) modules as Φθ while the stereo matching cost probabilities are extracted from stacked hourglass 3D convolutions on

the cross-spectral cost volume computed by Ψθ. More specifically, we perform bilinear interpolation on features of size



3222 x 1605 x 3 510 x 254 x 10 3222 x 1605 3222 x 1605

RGB MS Prediction Ground Truth

Figure 4. Additional Qualitative Results of our Network. From left to right: input RGB image, input multi-channels MS image, disparity

predicted by our network, ground-truth.
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Figure 5. Registration Results. RGB image (a); MS image displayed as a channel average with color-map (b); predicted (c) and ground-

truth (d) disparity maps; MS images warped based on the predicted (e) and ground-truth (f) disparities; absolute difference between

registered images (g) and disparities (h).

576×960×32 computed by Φθ and on matching cost probabilities of dimension 92×160×32 computed by Ψθ. It is worth

noticing that, for the cost volume computation, we modify the original implementation of PSM such that the two feature



extractors for L and R do not share weights and accept 3 channels as input for the RGB branch whilst 10 channels for the

multi-spectral branch.

GWC [3]: The GWC stereo backbone shares the same feature extractors as in PSM, while Ψθ incorporates group-wise

correlation to build-up the cross-spectral cost volume. Specifically, we perform bilinear interpolation on convolutional fea-

tures of size 576× 960× 332 from Φθ and matching cost probabilities of dimension 92× 160× 32 from Ψθ.

5.2. Continuous Output Representation

Our output representation follows the same implementation as proposed in [1], where two multi-layer perceptrons are in

charge of estimating a categorical distribution over disparity values and a subpixel offset starting from interpolated features

computed by the deep stereo backbone. More specifically, the number of neurons is (Dψ + Fφ, 512, 256, 128, dmax) for

MLPC while (Dψ+Fφ+1, 128, 64, 1) for MLPR, where Dψ = 32 and Fφ = 32 in case of the PSM stereo backbone while

Dψ = 32 and Fφ = 332 for GWC. In our experiments, we always use dmax = 768. Notice both multi-layer perceptrons

rely on Sine activation functions, except the last layer where Softmax and Tanh activations are used for MLPC and MLPR,

respectively.
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