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In this supplemental document, we present:

* analysis on the choice of PCA hand pose components
for MANO (Sec. 1.1);

* analysis on hand shape regularisation (Sec. 1.2);

* mathematical formulation of graph convolutions we
used for comparisons (Sec. 2);

* analysis on multi-head attention mechanism (Sec. 3);

* illustration of naive collaborative learning baseline 4;

* summary of dataset statistics (Sec. 5);

* additional reconstruction examples (Sec. 6).

1. Hand mesh estimation
1.1. MANO pose representation

As described in Section 3.1 in the main paper, our hand
branch outputs a 45-dimensional vector to represent the
hand. We experiment with different dimensionality for the
latent hand representation and summarise our findings in
Table 1. We observe low-dimensionality fails to capture
some poses present in the datasets and full 45-dimensional
vector is required to produce the best result. Therefore, we
use this value for all experiments in the main paper.

Table 1. We report the mean end-point error (mm) on FHB~ and
ObMan to study the effect of the number of PCA hand pose com-
ponents for the latent MANO representation.

PCA components 15 30 45
ObMan 1.7 96 9.2
FHB~ 282 26.1 253

1.2. MANO shape regularisation

As described in Section 3.1 in the main paper, we ob-
serve that hand reconstruction performance increases with
a larger saturated hand shape value than when it is trained
with hand shape regularisation. We experiment with the loss
on 3D joints (£ ;) and shape regularisation (Lg). Table 2
shows that the hand reconstruction performance increases
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without shape regularisation (Lg). As dense vertex super-
vision is not available in the real dataset FHB~ [3], we omit
experimenting on vertex loss Ly .

Table 2. The mean end-point errors (mm) of two versions of our
system that use 1) only the 3D joint loss (£ ) and 2) a combination
of the joint loss and shape regularisation (L; + £g). For both
ObMan [5] and FHB™ [3], low errors are measured when shape
regularisation is disabled.

ObMan | FHB~
Ly 9.2 25.3
Lr+Ls 10.3 27.5

2. Graph convolution

In the following, we provide the mathematical formula-
tion of GCN [6] and spiral mesh convolution [4, 7] which
were used for comparisons in the main paper.

For GCN, we followed [2] and used the adaptive graph
convolution:

Y = o(AXW), (1)

where Y is the output feature with N nodes and [ output
features for each node, o is the activation function, W €
R**! with k input features for each node, X € RNx%E g
the matrix of input features, and A € RVNXN is the row-
normalised adjacency of the graph.

For spiral mesh convolution, we adopted the most ba-
sic form of mesh convolution using spiral neighbourhoods
from [4,7]. Mathematically, spiral neighbourhoods S(i, )
of vertex ¢ with length [ can be defined as follows [8]:

O-ring(i) = {i},
I-disk (i) = Uy=o,... ;v-ring(3), @
(I 4+ 1)-ring(¢) = N (I-ring(4)) \ I-disk(7),
S(,1) C (0-ting(i), .., h-ring(i)),

where (V) is the set of all vertices adjacent to any vertex
in set V. Finally, we arrive at the basic spiral mesh convo-
lution:



Table 3. Performances of EdgeConv [9] on FHB™. We experiment
on network iterations P and associative loss Lqss0. We kept k =
20 for k-NN neighbourhood construction.

w £(I,SS() W/O £(1,SS()
Method | Hand Error  Object Error | Hand Error ~ Object Error
P=1 26.5 1583.8 27.2 1629.7
P=2 26.7 1582.2 27.5 1629.5
k k—1
v = MLP(luesipvi™) 3)

where the aggregating function || is a concatenation of spiral
neighbourhood and MLP as update function. We used spiral
length [ = 10 for all experiments.

In addition, we experiment with a popular k-nearest
neighbours (k-NN) based graph convolution, EdgeConv [9].
They dynamically construct k-NN neighbours Ny, (V;)
and can be described as:

t+1 _ V. V.

bt = max (ReLUMLP(V; = Vi, V2)) )
Similar to the two above graph convolution operators, Ta-
ble 3 shows that k-NN like approaches suffer from local
neighbourhood aggregation as the incoming mesh are 3D
positions.

3. Multi-head attention

As described in Section 3.3 in the main paper, we found
multi-head attention to be beneficial. We experiment with
different number of heads and summarise our findings in
Table 4. We used multi-head attention K = 3 in all experi-
ments as it provides the best performance.

Table 4. We report the mean end-point error (mm) on FHB~ and
ObMan to study the effect of the number of multi-head attention
mechanism.

#heads 1 2 3 4 5
ObMan 124 114 9.2 9.3 9.6
FHB~ 287 268 253 255 254

4. Naive collaborative learning baseline

To motivate our design choices, we experiment on a
naive collaborative learning baseline as shown in Fig. 1.
This design framework directly predicts embeddings ¢y and
reconstruct meshes my at the final stage. The key difference
between Fig. 1 and the final design is the attention-guided
graph convolution which is proposed to tackle the mutual
occlusion problem in hand-object interactions. Our exper-
iments demonstrate that our attention-guided graph convo-
lution combined with collaborative learning enables better
mesh quality as well as more accurate pose estimation.
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Figure 1. Simple collaborative learning framework design. Note
that the yellow cross sign refers to addition.

5. Details of dataset

Table 5 summarised the statistics for each datasets [5].

Table 5. Dataset details for train/test splits.

ObMan FHB FHB~
#frames I41K/6K | 8,420/9,103 | 5,077/5,657
#video sequence - 115/127 76/88
#object instances | 1,947/411 4 3

6. Reconstruction examples

We provide additional qualitative comparisons with Has-
son et al. [5] on the synthetic dataset ObMan. Fig. 2 demon-
strates that our method is able to produce more physically
plausible hand reconstruction than [5] without physical con-
straints. In particular, for the first two rows of Fig. 2, Ob-
Man’s hand reconstruction contains over-bending fingers
which is infeasible for humans. The bottom three rows of
Fig. 2 shows that our method is able to produce a more re-
fined and accurate hand reconstruction.

In addition to synthetic dataset ObMan, we also provide
additional reconstruction examples for real dataset DexYCB
[1] in the supplementary video. Our method is able to ac-
curately reconstruct hand and object mesh across various
hand poses and object class. In particular, we demonstrate
the importance of our attention-guided graph convolution
in collaborative learning by directly comparing with a naive
collaborative learning baseline (shown in Fig. 1). Also, we
provide reconstruction examples on pre-grasp stages as our
method is not restricted by contact loss terms [5].
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Figure 2. Qualitative comparison with Hasson et al. [S] on syn-
thetic dataset ObMan. Our method is able to reconstruct physi-

cally plausible hand mesh without physical constraints.
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