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In this supplemental document, we present:

• analysis on the choice of PCA hand pose components
for MANO (Sec. 1.1);

• analysis on hand shape regularisation (Sec. 1.2);
• mathematical formulation of graph convolutions we

used for comparisons (Sec. 2);
• analysis on multi-head attention mechanism (Sec. 3);
• illustration of naı̈ve collaborative learning baseline 4;
• summary of dataset statistics (Sec. 5);
• additional reconstruction examples (Sec. 6).

1. Hand mesh estimation

1.1. MANO pose representation

As described in Section 3.1 in the main paper, our hand
branch outputs a 45-dimensional vector to represent the
hand. We experiment with different dimensionality for the
latent hand representation and summarise our findings in
Table 1. We observe low-dimensionality fails to capture
some poses present in the datasets and full 45-dimensional
vector is required to produce the best result. Therefore, we
use this value for all experiments in the main paper.

Table 1. We report the mean end-point error (mm) on FHB− and
ObMan to study the effect of the number of PCA hand pose com-
ponents for the latent MANO representation.

PCA components 15 30 45
ObMan 11.7 9.6 9.2
FHB− 28.2 26.1 25.3

1.2. MANO shape regularisation

As described in Section 3.1 in the main paper, we ob-
serve that hand reconstruction performance increases with
a larger saturated hand shape value than when it is trained
with hand shape regularisation. We experiment with the loss
on 3D joints (LJ ) and shape regularisation (Lβ). Table 2
shows that the hand reconstruction performance increases

without shape regularisation (Lβ). As dense vertex super-
vision is not available in the real dataset FHB− [3], we omit
experimenting on vertex loss LV .

Table 2. The mean end-point errors (mm) of two versions of our
system that use 1) only the 3D joint loss (LJ ) and 2) a combination
of the joint loss and shape regularisation (LJ + Lβ). For both
ObMan [5] and FHB− [3], low errors are measured when shape
regularisation is disabled.

ObMan FHB−

LJ 9.2 25.3
LJ + Lβ 10.3 27.5

2. Graph convolution
In the following, we provide the mathematical formula-

tion of GCN [6] and spiral mesh convolution [4, 7] which
were used for comparisons in the main paper.

For GCN, we followed [2] and used the adaptive graph
convolution:

Y = σ(ÃXW ), (1)

where Y is the output feature with N nodes and l output
features for each node, σ is the activation function, W ∈
Rk×l with k input features for each node, X ∈ RN×k is
the matrix of input features, and Ã ∈ RN×N is the row-
normalised adjacency of the graph.

For spiral mesh convolution, we adopted the most ba-
sic form of mesh convolution using spiral neighbourhoods
from [4, 7]. Mathematically, spiral neighbourhoods S(i, l)
of vertex i with length l can be defined as follows [8]:

0-ring(i) = {i},
l-disk(i) = ∪v=0,...,lv-ring(i),

(l + 1)-ring(i) = N (l-ring(i)) \ l-disk(i),
S(i, l) ⊂ (0-ring(i), . . . , k-ring(i)),

(2)

where N (V ) is the set of all vertices adjacent to any vertex
in set V . Finally, we arrive at the basic spiral mesh convo-
lution:
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Table 3. Performances of EdgeConv [9] on FHB−. We experiment
on network iterations P and associative loss Lasso. We kept k =
20 for k-NN neighbourhood construction.

w Lasso w/o Lasso
Method Hand Error Object Error Hand Error Object Error
P = 1 26.5 1583.8 27.2 1629.7
P = 2 26.7 1582.2 27.5 1629.5

v
(k)
i = MLP

(
‖u∈S(i,l)v(k−1)

u

)
(3)

where the aggregating function ‖ is a concatenation of spiral
neighbourhood and MLP as update function. We used spiral
length l = 10 for all experiments.

In addition, we experiment with a popular k-nearest
neighbours (k-NN) based graph convolution, EdgeConv [9].
They dynamically construct k-NN neighbours Nk−nn(Vi)
and can be described as:

ht+1
i = max

j∈Nk−nn(Vi)

(
ReLU(MLP(Vj −Vi,Vi))

)
(4)

Similar to the two above graph convolution operators, Ta-
ble 3 shows that k-NN like approaches suffer from local
neighbourhood aggregation as the incoming mesh are 3D
positions.

3. Multi-head attention
As described in Section 3.3 in the main paper, we found

multi-head attention to be beneficial. We experiment with
different number of heads and summarise our findings in
Table 4. We used multi-head attention K = 3 in all experi-
ments as it provides the best performance.

Table 4. We report the mean end-point error (mm) on FHB− and
ObMan to study the effect of the number of multi-head attention
mechanism.

#heads 1 2 3 4 5
ObMan 12.4 11.4 9.2 9.3 9.6
FHB− 28.7 26.8 25.3 25.5 25.4

4. Naı̈ve collaborative learning baseline
To motivate our design choices, we experiment on a

naı̈ve collaborative learning baseline as shown in Fig. 1.
This design framework directly predicts embeddings φθ and
reconstruct meshes mθ at the final stage. The key difference
between Fig. 1 and the final design is the attention-guided
graph convolution which is proposed to tackle the mutual
occlusion problem in hand-object interactions. Our exper-
iments demonstrate that our attention-guided graph convo-
lution combined with collaborative learning enables better
mesh quality as well as more accurate pose estimation.

Figure 1. Simple collaborative learning framework design. Note
that the yellow cross sign refers to addition.

5. Details of dataset
Table 5 summarised the statistics for each datasets [5].

Table 5. Dataset details for train/test splits.

ObMan FHB FHB−

#frames 141K/6K 8,420/9,103 5,077/5,657
#video sequence - 115/127 76/88
#object instances 1,947/411 4 3

6. Reconstruction examples
We provide additional qualitative comparisons with Has-

son et al. [5] on the synthetic dataset ObMan. Fig. 2 demon-
strates that our method is able to produce more physically
plausible hand reconstruction than [5] without physical con-
straints. In particular, for the first two rows of Fig. 2, Ob-
Man’s hand reconstruction contains over-bending fingers
which is infeasible for humans. The bottom three rows of
Fig. 2 shows that our method is able to produce a more re-
fined and accurate hand reconstruction.

In addition to synthetic dataset ObMan, we also provide
additional reconstruction examples for real dataset DexYCB
[1] in the supplementary video. Our method is able to ac-
curately reconstruct hand and object mesh across various
hand poses and object class. In particular, we demonstrate
the importance of our attention-guided graph convolution
in collaborative learning by directly comparing with a naı̈ve
collaborative learning baseline (shown in Fig. 1). Also, we
provide reconstruction examples on pre-grasp stages as our
method is not restricted by contact loss terms [5].



Figure 2. Qualitative comparison with Hasson et al. [5] on syn-
thetic dataset ObMan. Our method is able to reconstruct physi-
cally plausible hand mesh without physical constraints.
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