
Automatic Synthesis of Diverse Weak Supervision Sources for Behavior Analysis
Supplementary Materials

Albert Tseng
Nuro∗

Jennifer J. Sun
Caltech

Yisong Yue
Caltech, Argo AI∗

Here, we provide additional information about our datasets and experiments. The Supplementary Materials are orga-
nized into three sections: implementation details (Section 1), example learned programs (Section 2), and additional results
(Section 3).

1. Implementation Details

1.1. Datasets and Domain-level Labeling Functions

Each of our behavior domains contains a dataset with tracked keypoints and features, domain-level labeling functions
(LFs), and a DSL. Below, we provide more details about the datasets and domain-level LFs. Details about the DSL are
provided in Section 1.2.

Fly vs. Fly. The Fly dataset [2] consists of videos (144 × 144 at 30 Hz), extracted behavioral features based on fly
trajectories, and frame-level behavior annotations. We use the “Aggression" and “Courtship" videos from this dataset, similar
to [5], and use the frame-level behavior annotations to evaluate our framework for behavior classification. The breakdown
of behaviors in this dataset is given by: lunge - 1.24%, wing threat - 4.26%, tussle - 0.35%, wing extension - 3.31%, circle -
0.80%, copulation - 59.73%, and no behavior - 30.42%. This dataset is available under the CC0 1.0 Universal license.

The domain-level LFs for the Fly DSL are based on the behavioral features provided with the dataset, and are crafted from
the outputs of FlyTracker [2]. They are similar to the fly behavior features used in [5], and we provide visualizations for
example LFs in Figure 1. The domain-level LFs included in the Fly DSL, grouped by category, are:

• Angular LFs: angular velocity of each fly, angle between fly trajectories, facing angle of flies.

• Linear (speed) LFs: linear velocity and speed of each fly.

• Positional LFs: position of each fly, distance between flies, distance between the legs of each fly.

• Ratio LFs: ratio of major and minor axis of fly shape for each fly, ratio of major and minor axis of fly body, ratio of
major and minor axis of bounding box around wing spread.

• Wing LFs: minimum and maximum wing angle (window), mean wing length (window), wingspan.

where “window” indicates that the LF is computed over a sliding window of the past 20 frames.
CalMS21 (Mouse). CalMS21 [4] consists of trajectory data, frame-level behavior annotations, and video data (1024×570

at 30 Hz) of a pair of interacting mice in a resident-intruder assay. The trajectory data from CalMS21 is from the MARS
detector [3], which detects 7 anatomically-defined body parts on each mouse in the form of keypoints. We use the trajectory
data and behavior annotations from the Task 1 train/test split to evaluate our framework for mouse behavior classification.
The breakdown of behaviors in this dataset is given by: attack - 3.44%, investigation - 27.56%, mount - 7.45%, and other -
61.56% This dataset is available under the CC-BY-NC-SA license.

The domain-level LFs for the Mouse DSL are based on existing behavioral features used by domain experts in [3] and are
similar to the features used in [5] (visualized in Figure 2). The LFs included in the Mouse DSL, grouped by category, are:

*Work done while author was affiliated with Caltech.

1

Facing Angle
(Fly 1)

Distance
Centroid

Max Wing
Angle (Fly 1)

Max Wing
Angle (Fly 2)

Axis Ratio
(Fly 1)

Axis Ratio
(Fly 2)

Figure 1. Visualizing a subset of programs computed on Fly vs. Fly. Reproduced with permission from [5].

B
Facing Angle
(Mouse 1)

Nose-Nose
Distance Nose-Tail

Distance

Head-Body
Angle (Mouse 1)

Head-Body
Angle (Mouse 2)

Figure 2. Visualizing a subset of programs computed on CalMS21. Reproduced with permission from [5].

• Positional LFs: nose, right ear, left ear, neck, RHS, LHS, and tail position for each mouse.

• Centroid LFs: centroid position of entire mouse, head, hips, and body for each mouse.

• Angular LFs: orientation of entire mouse, head, body, and angle between head and body (L&R) for each mouse, as well
as angle and facing angle between the two mice.

• Shape LFs: ratio of major and minor axis of mouse body and bounding ellipse for each mouse, as well as ratio of
bounding ellipse areas between the two mice, bounding ellipse overlap, and edge distance between bounding ellipses.

• Speed LFs: linear, radial, and tangential speed of each mouse, linear acceleration of each mouse, and relative speed of
resident vs intruder mouse.

• Relative Distance LFs: relative distance between bodies, noses, heads, and centroids of the two mice, among other
relative distances.

Basketball. The StatsPerform Generative Models Basketball [6] dataset consists of basketball player trajectories from
NBA games. Each trajectory is located in the left half of the court, and contains 25 frames sampled at 3Hz of 5 defense
players, 5 offense players, and 1 basketball. As the Basketball dataset does not have ground truth labels for any tasks, we use
a “ballhandler” label computed from the position of the ball relative to each player [1]. As such, we exclude the position of
the ball itself from our training data and domain-level LFs. The distribution of ballhandler by player is given by: 1 - 18.50%,
2 - 22.09%, 3 - 22.87 %, 4 - 18.18%, 5 - 18.36%. Since we are interested in the ballhandler, we exclude the offense players
from our training data and domain-level LFs.

The dataset itself is available for free on AWS Marketplace. The list of domain-level LFs included in the Basketball DSL,
grouped by category, are:

• Player: acceleration, velocity, speed, and position of each defense player.

• Ball: acceleration, velocity, and speed of the ball. Note this does not include the starting position of the ball so the true
position of the ball cannot be computed from the velocity.

1.2. Domain Specific Language (DSL)

The DSL we use in our experiments consists of elementary operations, operations on sequential data, and branching
structures, among others. We use the same DSL for all domains; only the domain-level LFs differ from domain to domain.
In Backus-Naur form, our DSL can be written as:

α ::= x | c | +(α1, . . . , αk) | ·(α1, . . . , αk) | ×(α1, . . . , αk) |⌢ (α1, . . . , αk)
⊕θ(α1, . . . , αk) | ⊕D x | if α1 then α2 else α3

map (fun x1, α1) x | fold (fun x1, α1) c x
(1)

Here, x and c represent input features and constants, respectively. +, ·,×, and ⌢ represent the addition, dot product,
outer product, and concatenation operators. ⊕θ represents domain-expert provided parameterized library functions and ⊕D

represents domain-level labeling functions. fun x.f represents a lambda that evaluates f over x; for example, if x is a
sequence {x0, x1, . . . , xk} then fun x.f returns {f(x0), f(x1), . . . f(xk)}. map and fold represent operations on vectors
and sequences, respectively.

if − then− else represents a differentiable ITE construct, which can be written with our program notation [[α]](x, θ) as
y = σ(β[[α]](x, θ1)) (2)

[[if α1 then α2 else α3]](x, (θ1, θ2, θ3)) = y[[α2]](x, θ2) + (1− y)[[α3]](x, θ3) (3)
where σ is the sigmoid function and β serves as a temperature parameter. As β → ∞, Equation 3 becomes a regular ITE.

1.3. Training Details

Student Networks. We use neural networks (NNs) for nonsequential data and LSTMs for sequential data. For NN based
student networks, we use 3 hidden layers with layer sizes of l1 ∼ U{50, 90}, l2 ∼ U{50, 80}, l3 ∼ U{20, 30}. Each hidden
layer is followed by a dropout layer with dropout probability d1 ∼ U[0,0.2], d2 ∼ U[0,0.2], d3 ∼ U[0,0.1]. All hidden layers use
the ReLU activation function. For LSTM based student networks, we use a 1 or 2 layer LSTM with equal probability and
h ∼ U{64, 128} hidden units. If we use a 2 layer LSTM, we also set the LSTM dropout probability to d ∼ U[0,0.2]. The final
hidden state of the LSTM is classified with a neural network with two hidden layers of sizes l1 ∼ U{50, 80}, l2 ∼ U{20, 30}.
Both layers are each followed by a dropout layer ∼i.i.d U[0,0.2] and use ReLU activation. All student networks are trained
with the Adam optimizer, using a learning rate of 10−4 for NNs and 3× 10−4 for LSTMs.

AutoSWAP Programs. For the Fly and Mouse dataset, neural completions were trained for 6 epochs, and symbolic
components were trained for 15 epochs. For the Basketball dataset, neural completions were trained for 4 epochs, and
symbolic components were trained for 6 epochs. For all datasets, parameters were optimized with the Adam optimizer. A
learning rate of 10−3 was used for the Fly and Mouse datasets, and 0.02 was used for the Basketball dataset. β was set to 1
for the differentiable ITE construct.

Downstream Classifier. Again, we use NNs for nonsequential data and LSTMs for sequential data. The downstream
classifier NN is a 3 layer network with (128, 64, 32) units in each hidden layer, respectively. Each layer is followed by a
dropout layer with dropout probability (0.5, 0.4, 0.3), respectively, and uses ReLU activation. For active learning experi-
ments, the weak label outputs are also included via skip connections to each layer. For LSTM based downstream classifiers,
we use a two layer LSTM with 128 hidden units and a dropout probability of 0.2. The final hidden state of the LSTM is
classified by a two layer neural network, with the first layer having 128 units with dropout probability 0.3, and the second
layer having 48 units with dropout probability 0.2. Again, both layers use ReLU and weak label outputs are included via
skip connections for active learning experiments. All downstream classifiers are trained with the Adam optimizer, using a
learning rate of 10−4 for NNs and 3× 10−4 for LSTMs.

1.4. Reproducibility

The code for our experiments is available at https://github.com/autoswap/autoswap_cvpr_2022. All experiments were run
on two different virtual machines with 12 Broadwell cores clocked at 2.6GHz and two Nvidia Tesla P40 GPUs each. Some
experiment sets were run across different machines due to resource constraints, thus some results that should otherwise be
identical have slight differences.

2. Learned Labeling Functions
Here, we present some example AutoSWAP LFs and our interpretations of them. While domain experts may have

different interpretations from us, the purpose of this section is to demonstrate the relative interpretability of AutoSWAP LFs.
Example 1: AutoSWAP labeling function for the Ballhandler task. The program can be interpreted as using the sum of

the frame level probabilities (fold), with each frame level probability being determined from player velocities or player coor-
dinates depending on the velocity of the ball. Summing over frame-level probabilities corresponds well with the “majority”
part of the ballhandler task (find the player that was the ballhandler for the majority of the sequence). The ITE construct can

https://github.com/autoswap/autoswap_cvpr_2022

be thought of as detecting passes, as the ball moves the fastest when it is being passed between players. Each *Affine labeling
function contains a set of parameters describing a linear transformation on the base LF. We include the parameters for scalar
affine LFs as x[a,b], which indicates the transformation ax + b is applied. We do not include the parameters for vector LFs,
as they are too large to list here, but examples can be found by running the code.

fold(fun xt . [

if BallVelocityAffine(xt)[0.73,−0.26]

then PlayerVelocitiesAffine(xt)

else PlayerCoordinatesAffine(xt)

]) xt

Example 2: AutoSWAP labeling function for the Wing Threat task (fly domain). The program can be interpreted as using
the product of the resident fly’s wing ratio and the sum of the resident fly’s body ratio and the distance between the two flies
to derive a probability for the resident fly displaying a wing threat towards the intruder fly. The program learns a positive a
for the wing ratio domain-level LF, which is reasonable as wing threats are correlated with wing spreading.

map(fun x . [

× (WingRatioAffine(x)[0.96,−0.71],

+ (BodyRatioAffine(x)[0.35,−0.20],FlyDistanceAffine(x)[0.67,0.13]))

]) x

Example 3: AutoSWAP labeling function for the mouse behavior classification task. Since the mouse task is a multi-class
classification task (for the “attack”, “investigate”, and “mount” behaviors), this program is not as trivially interpretable as
those for the Fly and Basketball domains. Nevertheless, we can still deduce that the program classifies the angular domain-
level LFs if the distance is small and the speed domain-level LFs otherwise. This is reasonable, as if the mice are far apart,
the speed of the mice is probably sufficient for determining which behavior they are engaging in, and if they are close to each
other, more detailed data (such as the angular LFs) may be needed.

map(fun xt . [

if MouseDistanceAffine(x)[1.02,−0.38]

then MouseAngularAffine(x)

else MouseSpeedAffine(x)

]) x

3. Additional Results
Using More Labeling Functions. In our main experiments, we used 3 labeling functions. The plots below (Figures 3,

4, 5) show the effect of using more labeling functions (5, 7). In general, active learning and random sampling performance
stays relatively stable, but some improvement can be observed in weak supervision settings. This can most likely be attributed
to the generative weak label model performing better with more labeling functions, as well as improved coverage from the
diversity measures.

Figure 3. Experiments with 3 (left-most column), 5, and 7 LFs for the Fly dataset. All plots are on a log-log scale. Due to resource
constraints, some experiments were run on different machines, effectively giving different seeds. Results within each plot were run on the
same machine and are directly comparable, but some results that should otherwise be the same across plots (e.g. ground truth labels) may
have slight differences. We note that in all plots, regardless of seed, AutoSWAP outperforms the baselines.

Figure 4. Experiments with 3 (left-most column), 5, and 7 LFs for the Mouse dataset. All plots are on a log-log scale. Due to resource
constraints, some experiments were run on different machines, effectively giving different seeds. Results within each plot were run on the
same machine and are directly comparable, but some results that should otherwise be the same across plots (e.g. ground truth labels) may
have slight differences. We note that in all plots, regardless of seed, AutoSWAP outperforms the baselines.

Figure 5. Experiments with 3 (left-most column), 5, and 7 LFs for the Basketball dataset. All plots are on a log-log scale. Due to resource
constraints, some experiments were run on different machines, effectively giving different seeds. Results within each plot were run on the
same machine and are directly comparable, but some results that should otherwise be the same across plots (e.g. ground truth labels) may
have slight differences. We note that in all plots, regardless of seed, AutoSWAP outperforms the baselines.

Isolated Labeling Function Performance. Here, we present the performance of the generated task-level labeling func-
tions themselves, outside of any downstream tasks. Since task-level LFs give labels for the task at hand, they can be evaluated
in the same context as the downstream tasks. As can be seen in Figure 6, AutoSWAP LFs do not always outperform LFs
from student networks and decision trees. This indicates that the data efficiency benefits of AutoSWAP come from the higher
quality learning signals AutoSWAP LFs give in downstream tasks, rather than their raw performance in a vacuum. Further-
more, AutoSWAP LFs generated without the diversity cost do not perform significantly differently than those generated with
the diversity cost, indicating that the diversity cost further improves the quality of the LFs’ learning signal.

Figure 6. Performance of generated task-level labeling functions outside of downstream tasks. As can be seen, AutoSWAP does not always
outperform the baseline LF generation methods. This indicates that the data efficiency benefits of AutoSWAP come from the improved
learning signal of AutoSWAP LFs relative to baseline LFs in downstream tasks. Furthermore, AutoSWAP LFs generated without the
diversity cost do not perform significantly differently than those generated with the diversity cost, indicating that the diversity cost further
improves the quality of the LFs’ learning signal.

Effect of Diversity Cost Table 1 shows a numerical comparison of the mean pairwise edit distance of 5 AutoSWAP LFs,
taken over 5 seeds. Adding the diversity cost results in increased pairwise edit distance over all three behavior domains and
increased performance in our experiments.

Frames Fly No Diversity Mouse No Diversity Basketball No Diversity
2000 5.06 (0.08) 4.08 (0.24) 4.62 (0.11) 3.63 (0.29) 3.36 (0.08) 3.06 (0.13)
5000 5.00 (0.08) 3.86 (0.14) 4.40 (0.22) 4.17 (0.13) 3.32 (0.09) 3.08 (0.12)
12500 4.76 (0.04) 3.50 (0.21) 4.58 (0.19) 3.94 (0.14) 3.24 (0.05) 3.06 (0.06)
50000 4.90 (0.06) 3.34 (0.39) 4.88 (0.12) 3.77 (0.35) 3.16 (0.04) 2.86 (0.07)

Table 1. Mean pairwise edit distance of 5 AutoSWAP LFs with & without diversity cost (5 seeds). Standard error in parentheses. Using
the diversity cost results in programs that are “farther apart” and thus more structurally diverse.

Compared to Self-Supervised Methods Self-supervised methods such as TREBA [5] have shown promise in reducing
the number of labeled data points needed to achieve performance parity in behavior analysis domains. Furthermore, such
methods are generally complimentary to LF generation methods, as learned representations can be used as additional input
features. We provide an empirical analysis of combining AutoSWAP and TREBA in the Mouse domain active learning
task in Figure 7, as TREBA features for CalMS21 are readily available. We do not provide an analysis of TREBA for
weak supervision task since TREBA features are features and not labels, and thus any comparisons between TREBA and
AutoSWAP there would be indirect. As can be seen in Figure 7, AutoSWAP alone outperforms TREBA, especially at lower
levels of annotated samples, and using both gives slight performance benefits over using AutoSWAP alone.

Figure 7. Using self-supervised TREBA [5] features improves performance compared to only using domain-level LFs.

References
[1] Jenna Wiens Armand McQueen and John Guttag. Automatically recognizing on-ball screens. In MIT Sloan Sports Analytics Confer-

ence, 2014. 2
[2] Eyrun Eyjolfsdottir, Steve Branson, Xavier P Burgos-Artizzu, Eric D Hoopfer, Jonathan Schor, David J Anderson, and Pietro Perona.

Detecting social actions of fruit flies. In European Conference on Computer Vision, pages 772–787. Springer, 2014. 1
[3] Cristina Segalin, Jalani Williams, Tomomi Karigo, May Hui, Moriel Zelikowsky, Jennifer J. Sun, Pietro Perona, David J. Anderson,

and Ann Kennedy. The mouse action recognition system (mars): a software pipeline for automated analysis of social behaviors in
mice. bioRxiv https://doi.org/10.1101/2020.07.26.222299, 2020. 1

[4] Jennifer J. Sun, Tomomi Karigo, Dipam Chakraborty, Sharada Mohanty, Benjamin Wild, Quan Sun, Chen Chen, David Anderson,
Pietro Perona, Yisong Yue, and Ann Kennedy. The multi-agent behavior dataset: Mouse dyadic social interactions. In Thirty-fifth
Conference on Neural Information Processing Systems Datasets and Benchmarks Track (Round 1), 2021. 1

[5] Jennifer J Sun, Ann Kennedy, Eric Zhan, David J Anderson, Yisong Yue, and Pietro Perona. Task programming: Learning data
efficient behavior representations. In Conference on Computer Vision and Pattern Recognition, 2021. 1, 2, 8, 9

[6] Yisong Yue, Patrick Lucey, Peter Carr, Alina Bialkowski, and Iain Matthews. Learning fine-grained spatial models for dynamic sports
play prediction. In 2014 IEEE international conference on data mining, pages 670–679. IEEE, 2014. 2

	. Implementation Details
	. Datasets and Domain-level Labeling Functions
	. Domain Specific Language (DSL)
	. Training Details
	. Reproducibility

	. Learned Labeling Functions
	. Additional Results

