
Appendices
A. Results on Additional Datasets

We further validate our method on two higher resolution
datasets. The first is a dataset of 7 types of skin lesions at a
resolution of 224× 224, ISIC-2018 [9], and the second is a
subset of ImageNet where the task is to classify 10 breeds
of dogs resized to 64× 64, ImageWoof. Both datasets have
∼10K/1K train/val images. Due to computation constraints,
we show only results against PGD(50) attack. Figure 6
shows the results of these experiments.

For the ISIC-2018 dataset we see an even stronger trend
than with CIFAR-10/100. Here FW-AT-ADAPT almost uni-
formly outperforms competing methods with respect to op-
timal tradeoffs. A similar trend to CIFAR-10/100 holds for
ImageWoof; however, the results are much less pronounced.
In particular PGD struggled at higher steps. We suspect the
lower performance is due to the lower resolution increasing
the difficulty of differentiating dog breeds which share many
semantically similar features, although we note FW-AT-
ADAPT seems to maintain performance across parameters.

B. Effects of Minimum Distortion Ratio Bound
on FW-Adapt

To better understand the impact of the minimum distor-
tion ratio, r, on FW-ADAPT we run the same distortion
ratios as in our main set of experiments over 5 independent
runs, and analyzed various performance and training metrics.
In Figure 7 plots both training time and adversarial accuracy
as a function of the minimum distortion ratio bound, r. Ad-
versarial accuracy is computed against a PGD(10) attack
with step size 2.5ϵ/10. Both time and adversarial accuracy
are reported as the mean of 5 independent training runs. We
see for both ϵ = 8/255 and 16/255 the adversarial accuracy
increases with training time. In both cases, there seems to be
an optimal r in terms of training time vs robustness tradeoffs,
around 0.9 and 0.88 for ϵ = 8/255 and 16/255 respectively.

In Figure 8 we show how the number of steps used by
FW-ADAPT evolves during training for our different values
of the minimum distortion ratio bound r. We do not consider
the first batch as this is always a two-step attack to monitor
the distortion. Steps are averaged across 5 independent runs.

Higher values of r result in a linear increase towards
the maximum number of steps, 15, and very low values of
r result in primarily, although importantly not exclusively,
single steps of attacks during training. As expected, the
optimal value of r based on Figure 7 corresponds to training
strategies which used a small number of steps initially and
then modestly increase during training.

Figure 9 is in a sense dual to Figure 8 in that we plot the
value of FW(2) distortion used in the adaptive step check.

(a) ISIC-2018

(b) ImageWoof

Figure 6. Adversarial accuracy against ϵ = 8/255 attacks with
PGD(50). Dashed line spans optimal parameters. (PGD steps
2,3,5,7)

Again, we averaged the values over five independent runs.
The high values of r which quickly increased their train-

ing steps have a smooth gradual decay in their distortion
check; whereas, lower values had much more variation in
their checks. The overall trend of decaying distortion is inter-
esting and reinforces the fact that as AT progresses, stronger
multi-step attacks are needed to more effectively increase
the loss, but early in training such steps are not necessary.
FW-ADAPT is able to capitalize on this to achieve faster
training times. In future work, we hope to better understand
the decaying trend of distortion, and perhaps develop more
sophisticated adaptive criterion and step modifications to
further improve performance.

C. FW-AT is As Good As PGD-AT

Although we focus on the novel FW-ADAPT algorithm
here, we note that using FW optimization (Algorithm 1) in
place of PGD with no other alterations performs as well
as PGD in terms of robustness and training times. Figure
10 shows the training times and accuracy against PGD(5)0



(a) ϵ = 8/255

(b) ϵ = 16/255

Figure 7. Average Training times and adversarial accuracy against
PGD(10) as a function of minimum distortion ratio over five inde-
pendent runs.

attacks for models trained with PGD-K-AT and FW-K-AT
for K ∈ {1, 2, 3, 5, 7, 10}. The training parameters are the
same as those above except accuracy and training time are
averaged over three independent runs and we train for 40
epochs. We see that FW-AT performs comparably to PGD-
AT. We hope this will encourage further study of FW for
deep learning and AT.

D. Distortion and Gradient Alignment as Catas-
trophic Overfitting Signals

The basis of FW-ADAPT is that a small number of batches
going through low-compute adversarial training (FW(2))
can provide a strong signal as to how many steps are needed
for the rest of the epoch. As a particular example of this
we showed empirically that the distortion of FW(2) attacks
is a strong signal of catastrophic overfitting (CO), the phe-
nomena where a model is trained with a single step attack
and is achieving high accuracy against strong multi-step
attacks, but then suddenly loses robustness against strong at-
tacks while still being robust to the single step attack. In [2]
authors note that gradient misalignment is also strongly as-
sociated with CO and they use it to regularize single step
methods (FGSM-GA).

Here we compare FW(2) distortion and gradient align-

(a) ϵ = 8/255

(b) ϵ = 16/255

Figure 8. Number of attack steps during training for varying mini-
mum distortion ratios. Plot ignores the first batch which is always
done with 2 steps. Results averaged over 5 runs.

ment (GA) as signals for CO. In figure 11 shows the gradual
(top) and overall transition of model into CO. Both the distri-
butions of GA and FW(2) distortion are able to distinguish
the CO model from the non-CO model. During the transi-
tion we see the GA score distribution becomes more diffuse
during the transition; whereas, the FW(2) distortion has a
more gradual peak shift during transition.

Interestingly, the GA signal may be slightly clearer than
the FW(2) distortion for CO detection. Although, as we
see above, using the GA as a regularizer for single step
methods is not able to achieve the same level of robustness
as multi-step methods. This suggest that there is more to
the gap between single and multi-step methods than merely
fixing CO. Building upon the theoretical foundation for ex-
actly what is missed by single step methods is an interesting
direction of further research.

E. Proofs

E.1. Proof of Proposition 1

Proof. The LMO solution is given by δ̄k = ϵ ϕp(∇δL(x+
δk, y)) and the update becomes

δk+1 = δk + γk(δ̄k − δk)

= (1− γk)δk + γk ϵ ϕp(∇δL(x+ δk, y))



(a) ϵ = 8/255

(b) ϵ = 16/255

Figure 9. Average distortion check value during training for varying
minimum distortion ratios.Results averaged over 5 runs.

Using induction on this relation yields after K steps:

δK = δ0

K−1∏
l=0

(1− γl)

+ ϵ

K−1∑
l=0

γl

K−1∏
i=l+1

(1− γi)ϕp(∇δL(x+ δk, y)) (11)

where δ0 is the initial point which affects both terms in (11)
and γk = c/(c+ k) for k ≥ 0. Since γ0 = 1, the first term
vanishes and (11) simplifies to

δK = ϵ

K−1∑
l=0

αlϕp(∇δL(x+ δl, y)) (12)

(a) ϵ = 8/255

(b) ϵ = 16/255

Figure 10. Accuracy against PGD(5)0 attacks on CIFAR-10 vali-
dation images for FW-AT and PGD-AT at various ϵ values.

Figure 11. Distribution of FW(2) Distortion and Gradient direction
at the point and and random direction (Grad. Align signal) for 1024
randomly sampled CIFAR-10 validation images during FGSM-
AT training where catastrophic overfitting occurs as in Figure 4.
(Top) The transition across 7 epochs into CO, (Bottom) focusing
on epochs clearly before, during, and clearly after CO occurs.

where the coefficients are

αl = γl

K−1∏
i=l+1

(1− γi) (13)

Since γl ∈ [0, 1], it follows that αl ∈ [0, 1]. Induction on
(13) yields that

∑K−1
l=0 αl = 1. Furthermore, αl ≤ αl+1



follows from:

αl ≤ αl+1

⇔ γl (1− γl+1) ≤ γl+1

⇔ c

c+ l

(
1− c

c+ l + 1

)
≤ c

c+ l + 1

⇔ l + 1

c+ l
≤ 1

⇔ 1 ≤ c

Thus, the sequence αl is non-decreasing in l. Since the coeffi-
cients sum to unity, (12) is in the convex hull of the generated
LMO sequence {ϕp(∇δL(x+δl)) : l = 0, . . . ,K−1}.

E.2. Proof of Theorem 1

Proof. From Proposition 1, we obtain the following decom-
position of the adversarial perturbation:

δK = ϵ

K−1∑
l=0

αlsgn(∇δL(x+ δl, y))

To bound the magnitude of the adversarial perturbation, we
have

∥δK∥2 =
√
∥δK∥22 = ϵ

√∥∥∥∑
l

αlsl

∥∥∥2
2

where we use the shorthand notation sl = sgn(∇δL(x +
δl, y)). The squared ℓ2 norm in the above is bounded as:
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l

αlsl

∥∥∥2
2
=

∑
l

∑
j

αlαj ⟨sl, sj⟩

=
∑
l

(αl)
2∥sl∥22 +

∑
l ̸=j

αlαj∥sl∥2∥sj∥2 cosβlj

= d
(∑

l

(αl)
2 +

∑
l ̸=j

αlαj cosβlj

)
= d

(∑
l

(αl)
2 +

∑
l ̸=j

αlαj −
∑
l ̸=j

αlαj(1− cosβlj)
)

= d
(
1−

∑
l ̸=j

αlαj(1− cosβlj)
)

= d
(
1− 2

∑
l<j

αlαj(1− cosβlj)
)

where we used ∥sl∥2 =
√
d and from Proposition 1

(
∑

l αl)
2 = 1. The final step follows from symmetry. This

concludes the proof.

E.3. Proof of Theorem 2

Proof. From Theorem 1 and the lower bound on the distor-
tion, it follows that:∑

l<j

αlαj(1− cosβlj) ≤ η/2 (14)

Letting si = sgn(∇L(x+ δi, y)) and expanding the squared
difference of signed gradients:

∥sl − sj∥22 = ∥sl∥22 + ∥sj∥22 − 2 ⟨sj , sl⟩
= ∥sl∥22 + ∥sj∥22 − 2∥sj∥2∥sl∥2 cosβlj

= d+ d− 2d cosβlj

= 2d(1− cosβlj) (15)

Using (15) into (14),

∑
l<j

αlαj∥sl − sj∥22 ≤ ηd (16)

For the FGSM deviation bound, i.e., k0 = 1, we have by
the triangle inequality:

∥δK − ϵsgn(∇xL(x, y))∥2 = ∥ϵ
K−1∑
l=0

αlsl − ϵs0∥2

= ∥ϵ
∑
l

αlsl −
∑
l

αlϵs0∥2

= ϵ∥
∑
l

αl(sl − s0)∥2

≤ ϵ
∑
l>0

αl∥sl − s0∥2 (17)

Using Cauchy-Schwarz inequality, we obtain:

∑
l>0

αl∥sl − s0∥2 ≤
√
K − 1

√∑
l>0

(αl)2∥sl − s0∥22

≤
√
K − 1

√∑
l<j

(αl)2∥sl − sj∥22

≤
√
K − 1

√∑
l<j

αlαj∥sl − sj∥22

≤
√
K − 1 ·

√
ηd (18)

where we used the non-decreasing property of the sequence
{αl}l and the bound (16). This concludes the first part.

Given 1 ≤ k0 ≤ K, we have via using Proposition 1



twice:

δK − δk0
= ϵ

K−1∑
l=0

αlsl − δk0

= ϵ

K−1∑
l=0

αlsl −
∑
l

αlδk0

= ϵ

K−1∑
l=0

αl(sl − δk0/ϵ)

= ϵ

K−1∑
l=0

αl(sl −
k0−1∑
j=0

α̃jsj)

= ϵ

K−1∑
l=0

αl

k0−1∑
j=0

α̃j(sl − sj)

= ϵ

K−1∑
l=0

k0−1∑
j=0

αlα̃j(sl − sj) (19)

where αl = γl
∏K−1

i=l+1(1 − γi), 0 ≤ l ≤ K − 1 and α̃j =

γj
∏k0−1

i=l+1(1− γi), 0 ≤ j ≤ k0 − 1.

Taking the ℓ2 norm of both sides of (19) and using the
triangle inequality, we obtain:

∥ δK − δk0
∥2≤ ϵ

K−1∑
l=0

k0−1∑
j=0

αlα̃j∥sl − sj∥2

Using the Cauchy-Schwarz inequality yields:
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l=0
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j=0

αlα̃j∥sl − sj∥2
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∑k0−1

j=0 (α̃j)2

α0α1

√
ηd

where we used (16) and the nondecreasing sequence {αl}
implies minl<j{αlαj} = α0α1. This concludes the proof
of the second part.

E.4. Proof of Theorem 3

Proof. Using the triangle inequality and the L-Lipschitz
continuous loss gradient assumption:

∥g(θ, δ(K))− g(θ, δ(k0))∥2

=
∥∥∥ 1

|B|
∑
i∈B

(∇θL(fθ(xi + δi(K)), yi)

−∇θL(fθ(xi + δi(k0)), yi))
∥∥∥
2

≤ 1

|B|
∑
i∈B

∥∇θL(fθ(xi + δi(K)), yi)

−∇θL(fθ(xi + δi(k0)), yi))∥2

≤ L

|B|
∑
i∈B

∥δi(K)− δi(k0)∥2 (20)

The average distortion condition yields via Proposition 1
(with the superscript (i) denoting the i-th example variables):

1

|B|
∑
i∈B

√
1− 2

∑
l<j

αlαj(1− cosβ
(i)
lj ) ≥

√
1− η

Using Jensen’s inequality (and the concavity of the square
root function) further yields after some algebra:

1

|B|
∑
i∈B

∑
l<j

αlαj(1− cosβ
(i)
lj ) ≤ η

2

Borrowing the relation (15) from the proof of Theorem 2,
we further obtain:

1

|B|
∑
i∈B

∑
l<j

αlαj∥s(i)l − s
(i)
j ∥22 ≤ ηd (21)

Using the relation (19), it follows:
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ϵ
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where we used (a) triangle inequality, (b) Cauchy-Schwarz,
and (c) Jensen’s inequality.



From (21), it follows that:

1

|B|
∑
i∈B

K−1∑
l=0

k0−1∑
j=0

∥s(i)l − s
(i)
j ∥22 ≤ 2ηd

α0α1
(23)

Combining (23) with (22) yields:

1

|B|
∑
i∈B

∥δi(θ,K)− δi(θ, k0)∥2 ≤ ϵ
√
d
√
ηCk0,K

where Ck0,K =

√
2
∑K−1

l=0 α2
l

∑k0−1
j=0 α̃2

j

α0α1
. Using this bound in

(20) concludes the proof.

E.5. Convergence Analysis

Loss functions L(x + δ, y) in deep neural networks are
nonconvex in general. For a targeted attack that aims to
fool the classifier to predict a specific label, without loss
of generality, we seek to minimize the loss f(δ) = L(x +
δ, y′) over a ℓp constraint set. The untargeted case follows
similarly. 1 For general nonconvex constrained optimization,
the Frank-Wolfe gap given by [11]:

G(δk) = max
δ∈Bp(ϵ)

⟨δ − δk,∇δL(x+ δk, y)⟩ (24)

is nonnegative in general and zero at stationary points. The
convergence of FW on non-convex functions has been stud-
ied in [17] and recently improved for strongly convex con-
straints in [26].

Assumption 2. The function f has L-Lipschitz continu-
ous gradients on Bp(ϵ), i.e., ∥∇f(u) −∇f(v)∥ ≤ L∥u −
v∥,∀u, v ∈ Bp(ϵ).

Assumption 2 is a standard assumption for the nonconvex
setting and has been made in several works [8, 17]. A recent
study [29] shows that the batch normalization layer used
in modern neural networks makes the loss much smoother.
Furthermore, the process of adversarial training smooths
the loss landscape in comparison to standard models signifi-
cantly [22, 25].

Given Assumption 2 and the compactness of the con-
straint sets, all limit points of FW are stationary points [4].
The convergence rate of FW to a stationary point for opti-
mization over arbitrary convex sets was first shown in [17]
given by

min
1≤s≤t

G(δs) ≤
max{2h0, L diam(B)}√

t+ 1

where h0 = f(δ0)−minδ∈B(ϵ) f(δ) is the initial global
suboptimality. It follows that larger ϵ imply a larger diameter

1For untargeted attacks, minδ∈B(ϵ) −L(x + δ, y) is considered and
the FW gap becomes (24).

and more iterations may be needed to converge 2. This result
implies that an approximate stationary point can be found
with gap less than ϵ0 in at most O(1/ϵ20) iterations. Theo-
rem 4 in [26] shows that for smooth non-convex functions
over strongly convex constraint sets, FW yields an improved
convergence rate O

(
1
t

)
, which importantly does not hold

for the ℓ∞ constraint.

2The diameter of ℓ2 ball is 2ϵ and for the ℓ∞ ball 2ϵ
√
d.
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