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1. Dataset Licenses
In this work we use the HS-ERGB dataset [22] which

is published under the ”TimeLens Evaluation License” and
can be found under the URL http://rpg.ifi.uzh.
ch/timelens. The Vimeo90k dataset [26] is published
under the following URL http://toflow.csail.
mit.edu/.

2. Network structure
In this section, we provide a detailed description of our

network. As explained in the paper, our network consist of
spline motion estimator and multi-scale feature fusion mod-
ules. The spline motion estimator consists of 2 encoders and
one joint decoder and the multi-scale fusion network con-
sists of 4 encoders and one joint decoder. In both networks,
encoders and decoders have the same structure shown in
Fig. 2 and Fig. 1.

All decoder and encoder are defined by three parameters:
depth D, the maximum number of features Cmax and the
base number of features C. We provide these parameters for
the motion estimator module and multi-scale fusion module
in Tab. 1.

Module D Cmax C

Fusion encoders & decoder 3 128 32
Motion estimator encoders & decoder 4 256 64

Table 1. Parameters of encoder and decoder for motion estimator
and multi-scale fusion modules.

3. Training Details
In this section, we provide additional details about the

training procedure.
Thresholded losses. As we mentioned in the paper, we

use SSIM and L1 losses to train the motion estimator. We
found that it is beneficial to use these losses only in the areas
where they are beyond a certain threshold (0.06 for L1 and
0.4 for SSIM). Intuitively, this helps to exclude occluded

Figure 1. Architecture of joint decoder.

Figure 2. Architecture overview of encoder.

areas and areas with brightness constancy violation from
the loss computation.

Multi-stage training. We developed a multi-stage train-
ing procedure that improves the performance of the motion
estimator (see Tab. 2) as well as the multi-scale fusion mod-
ule (see Tab. 3). We use the same procedure for the mo-
tion encoder and the multi-stage fusion module since they
share a similar high-level network structure. Firstly, we
train the image and event-based encoders separately, each
with its own “dummy” decoder. Secondly, we select sim-
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ilar performing checkpoints for each encoder, we remove
the dummy encoders and train joint decoder while freez-
ing parameters of the encoders. Finally, we unfreeze all
weights and train the entire network. This procedure helps
when encoders have different training speeds and forces the
network to avoid a local minimum where the decoder uses
features only from the “faster” training encoder, ignoring
the other. For example, the event-based motion encoder in
the motion estimation module trains much faster than the
image-based motion encoder, and thus using a single-stage
training procedure would learn to simply ignore images and
only use events. By contrast, our multi-stage training pro-
cedure forces the network to use both inputs.

4. Additional Ablations

Here we present ablations that we omitted from the main
paper due to space limitations.

Method SSIM PSNR [dB]
Importance of Double Encoder

U-Net 0.858 27.13
Double Enc. U-Net (ours) 0.863 27.41

Importance of Multistage Training
Single stage 0.863 27.41
Multistage (ours) 0.879 28.10

Table 2. Additional ablation for motion estimation module.

Method SSIM PSNR [dB]
Importance of shared synthesis encoder

Joined 0.911 31.74
Shared (ours) 0.912 31.87

Importance of Multistage Training
Single stage 0.912 31.87
Multistage (ours) 0.919 32.73

Table 3. Additional ablation studies for fusion module.

Motion estimator. Here we summarize additional abla-
tions for the motion estimator in Table 2. We found that us-
ing two separate encoders in the motion module improves
results by 0.23 dB, by leaving the encoders more freedom to
compute separate features for events and frames. Addition-
ally, we found that by conducting multi-stage training, we
can further improve the performance of our module by 0.69
dB. Multistage training consists of firstly training each en-
coder separately, when freezing encoders and train decoder,
and finally training the entire motion module.

Multi-scale feature fusion. We found that, by using
shared synthesis encoders, we can get a 0.13 dB improve-
ment, and, by applying multi-stage training, we can further
boost performance by 1.06 dB in Tab. 3. Additionally, in
Fig. 3 we show the average attention weights predicted by
our fusion network for synthesis and warping interpolation

features on each scale. It is clear that the fusion network
uses both synthesis and warping interpolation features, but
prefers synthesis features on coarse scales and warping fea-
tures on fine scales. This is consistent with observations in
Time Lens [27].

Figure 3. Average attention weights predicted by fusion network
for synthesis and warping interpolation features on each scale.

5. Beamsplitter Setup and Dataset
We built an experimental setup with a global shutter

RGB Flir 4096×2196 camera and a Prophesee Gen4M
1280×720 event camera [1] arranged with the beam splitter
as shown in Fig. 5.

In our setup, the two cameras are hardware synchronized
through the use of external triggers. Each time the stan-
dard camera starts and ends exposure, a trigger is sent to the
event camera which records an external trigger event with
precise timestamp information. This information allows us
to assign accurate timestamps to the standard frames.

We use a standard stereo rectification procedure using
images and event reconstructions from E2VID [2] to physi-
cally align the event and frame cameras and achieve a base-
line of around 0.6mm. Next, we set the same focus for
the event and frame camera and match the resolution of the
RGB camera to the event camera by downsampling the im-
ages to a resolution of 1280×720. Next, we calibrate each
camera separately to estimate the lens distortion parame-
ters and focal lengths. After removing the lens distortion,
we estimate a homography that compensates for the mis-
alignment between events and images. While this proce-
dure removes misalignment for most of the scenes, small
pixel misalignment still occurs for very close scenes due
to the residual baseline. We automatically compensate for



Figure 4. The dataset includes challenging scene with water, color liquid, objects and liquid, small colorful objects, fire, thin colorful
objects, rotating objects on a moving background, eye catching scene (from top-left to bottom-right)

Figure 5. The beamsplitter setup mounts a FLIR RGB global shut-
ter camera and a Prophesee Gen4 event camera [1] mounted on a
case with a 50R/50T beam splitter mirror that allows the sensors
to share a spatially aligned field of view. view

this misalignment for each sequence using a small global
x-y shift, computed by maximizing the cross-correlation of
event integrals and temporal image difference. Finally, after
image acquisition, we adjust the brightness and contrast of
the images. Using the procedure above, we collected 123
diverse and challenging scenes with varying depth, some of
which we show in Fig. 4. The dataset is divided into 78
training scenes, 19 validation scenes, and 26 test scenes.
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