Initial Assignment

After Pruning

Figure 8. Data pruning. The initial assignment of pixels to cells
is based purely on camera positions. We add each pixel to the
training set of all cells it traverses, leading to overlap between sets
(top). After the model gains a 3D understanding of the scene,
we can filter irrelevant pixels by instead assigning pixels based on
camera ray intersection with solid surfaces (bottom).

Supplemental Materials

A. Data Pruning

Recall that the initial assignment of pixels to spatial cells
is based on camera positions, irrespective of scene geome-
try (because that is not known at initialization time). How-
ever, Sec. 3.2 points out that one could repartition our train-
ing sets with additional 3D knowledge. Intuitively, one can
prune away irrelevant pixel/ray assignments that don’t con-
tribute to a particular NeRF submodule due to an interven-
ing occluder (Fig. 8).

To explore this optimization, we further prune each data
partition early into the training process after the model gains
a coarse 3D understanding of the scene (100,000 iterations
in our experiments). As directly querying depth informa-
tion using conventional NeRF rendering is prohibitive at our
scale, we instead take inspiration from Plenoctree and tabu-
late the scene’s model opacity values into a fixed resolution
structure. We then calculate the intersection of each train-
ing pixel’s camera ray against surfaces within the structure
to generate new assignments. We found that it took around
10 minutes to compute the model density values and 500ms
per image to generate the new assignments. We summarize
our findings in Table 5.

B. Scaling properties

We further explore Mega-NeRF’s scaling properties
against the Mill 19 - Rubble dataset. We vary the total num-
ber of submodules and the number of channels per submod-
ule across 1, 4, 9, and 16 submodules and 128, 256, and
512 channels respectively. We summarize our findings in
Table 6. Increasing the model capacity along either dimen-
sion improves rendering quality, as depicted in Fig. 9. How-
ever, although increasing the channel count severely penal-
izes training and rendering speed, the number of submod-
ules has less impact.

C. Dynamic octree generation

The maximum tree size used by Mega-NeRF-Dynamic is
bounded by available GPU memory, which we set to 20M
elements in our experiments. We track the number of pixels
visible from each node as we traverse the tree when render-
ing. We then subdivide the top &k (16,384) nodes with the
most pixels. We observe maximum tree depths of roughly
12 in practice. As we track which nodes contribute to which
pixels, we also prune entries that have not recently con-
tributed in order to reclaim space whenever we hit capacity.

D. Baselines

Multi-view stereo. Although scaling dense multi-view
stereo remains an open research problem [10], we optimize
for the best possible reconstructions instead of training time
for the purpose of our evaluation. We use COLMAP to gen-
erate meshes with Poisson surface reconstruction. We found
that this method failed to generate reasonable results for
scenes containing many sky pixels. We therefore use fore-
ground masks generated from a trained Mega-NeRF model
to mask background regions during surface reconstruction
to achieve better results.

Stable View Synthesis. We train the network represent-
ing each scene from scratch for 600,000 iterations. Stable
View Synthesis relies on a geometric scaffold containing
depth information and we use the meshes generated from
COLMAP for this purpose.

DeepView. We base our DeepView baseline on a pub-
licly available implementation. We use 3 blocks of 24 chan-
nels and train our model for 200,000 iterations using ran-
dom 200 x 100 crops of the input views. During training,
we randomly sample nearby input views for a given target
view as determined by the capture time of each image.

E. Limitations

Pose accuracy. Although our work presents a first step
towards scaling NeRF to handle large-scale view synthesis,
several obstacles remain ahead of deploying them in prac-
tice. Pose accuracy is arguably the largest limiting factor.
The initial models we trained using raw camera poses col-
lected from standard drone GPS and IMU sensors were ex-
tremely blurry. As alternatives to PixSFM [19], we exper-
imented with refining our camera poses with BARF’s [18]
coarse-to-fine adjustment and Pix4DMapper [2], a commer-
cial drone mapping solution. Our results were uniformly
better with the PixSFM poses, with a PSNR gap of over 6
db relative to the second-best solution (Pix4DMapper). SC-
NeRF [14] and GNeRF [22] are other recent alternatives
that merit further exploration. Another hardware-based so-
lution would be to use higher-accuracy RTK GPS modules
when collecting footage.

Mill 19 Quad 6k UrbanScene3D
TPSNR 1SSIM |LPIPS |Pixels TPSNR 1SSIM |LPIPS |Pixels TPSNR 1SSIM |LPIPS |Pixels
Original Data 22.50 0.550 0.511 0.211 18.13 0.568 0.602 0.390 23.65 0.644 0500 0.270
Pruned Data 22.76 0571 0488 0.160 18.16 0.569 0.593 0.149 23.87 0.656 0483 0.163

Table 5. Data pruning. The initial assignment of pixels to spatial cells is based purely on rays emanating from camera centers, irrespective
of scene geometry. However, once a rough Mega-NeRF has been trained, coarse estimates of scene geometry can be used to prune irrelevant
pixel assignments. Doing so reduces the amount of training data for each submodule by up to 2x while increasing accuracy for a fixed

number of 500,000 iterations.

4 Submodules
Train

1 Submodule
Train Render
JLPIPS Time (h) Time (s)
0.670 18:54 2.154
0.622 28:54 3.298
0.559 52:33 6.195

1PSNR 1SSIM
2175 0435
2260 0471
2340 0512

1PSNR 1SSIM
2261 0.469

2363 0.521

2453 0.581

0.631
0.551
0.482

18:56
29:09
52:34

128 Channels
256 Channels
512 Channels

Render

|LPIPS Time (h) Time (s)

2.489
3.427
6313

9 Submodules 16 Submodules

Train Render TPSNR 1SSIM Train Render

TPSNR 1SSIM |LPIPS Time (h) Time (s) TPSNR 1SSIM |LPIPS Time (h) Time (s)
23.08 0495 0.59%4 19:01 2.633 2334 0513 0.568 19:02 2.851
24.17 0559 0.508 29:13 3.793 2452 0.584 0481 29:14 3.991

2511 0.625 0.438 53:36 6.671 25.68 0.659 0.407 53:45 6.870

Table 6. Model scaling. We scale up Mega-NeRF with additional submodules (rows) and increased channel count per submodule
(columns). Scaling up both increases reconstruction quality, but increasing channels significantly increases both training and rendering

time (as measured for Mega-NeRF-Dynamic).

256 Channels 128 Channels

512 Channels

1 Submodule 4 Submodules

16 Submodules

9 Submodules

Figure 9. Model scaling. Example rendering within our Mill 19 - Rubble dataset across different numbers of submodules (columns)
and channels per submodule (rows). Mega-NeRF generates increasingly photo-realistic renderings as capacity increases. Increasing the
number of submodules increases the overall model capacity with little impact to training and inference time.

Dynamic objects. We did not explicitly address dy-
namic scenes within our work, a relevant factor for many
human-centered use cases. Several recent NeRF-related ef-
forts, including NR-NeRF [37], Nerfies [26], NeRFlow [5],
and DynamicMVS [11] focus on dynamism, but we the-
orize that scaling these approaches to larger urban scenes
will require additional work.

Scale. Mega-NeRF explicitly targets urban-scale envi-

ronments instead of smaller single-object settings. Our tests
against scenes from the Synthetic-NeRF dataset suggests
our ray bound strategy and per-image appearance embed-
dings do not harm quality but that our spatial partitioning
strategy reduces PSNR by about 1 db relative to NeRF.
Rendering speed. While our renderer avoids the pitfalls
of existing fast NeRF approaches, it does not quite reach
the throughput needed for truly interactive applications. We

Figure 10. Parrot ANAFI drone. The drone used to collect data
for the Mill 19 dataset. The drone comes equipped with a 4K
Camera, GPS, and an inertial measurement unit (IMU) from which
we derive initial camera poses.

explored uncertainty-based methods as detailed in [44] to
further improve sampling efficiency, but open challenges re-
main.

Training speed. Although our training process is sev-
eral factors quicker than previous works, NeRF training
time remains a significant bottleneck towards rapid model
deployment. Recent methods such as pixelNeRF [46] and
GRF [38] that introduce conditional priors would likely
complement our efforts but necessitate gathering similar
data to the scenes that we target. We hope that our Mill
19 dataset, in addition to existing collections such as Ur-
banScene3D [20], will serve as a valuable contribution.

F. Societal impact

The capture of drone footage brings with it the possi-
bility of inadvertently and accidentally capturing privacy-
sensitive information such as people’s faces and vehicle li-
cense plate numbers. Furthermore, what is considered sen-
sitive and not can vary widely depending on the context.

We are exploring the technique of “denaturing” first de-
scribed by Wang et al [39] that allows for fine-grain policy
guided removal of sensitive pixels at interactive frame rates.
As denaturing can be done at full frame rate, preprocessing
should not slow down training, although it is unclear what
the impact of the altered pixels would have on the resulting
model. We plan on investigating this further in the future.

G. Assets

Mill 19 dataset. We have publicly released our Mill 19
dataset along with our calibrated poses to the wider research
community. We collected our data using the Parrot ANAFI
drone pictured in Figs. 10 and 11. We captured photos in
the grid pattern illustrated in Fig. 12. In addition to FAA
approval, we also received permission from the city to fly
in the area and ensured that no non-consenting people were

|
i

Figure 12. Data collection. We collect our poses for our Mill 19
dataset using a grid pattern as shown. Collecting footage across a
200,000 m? area takes approximately 2 hours.

captured in the data.

Third-party assets. The main third-party assets we
used were the UrbanScene3D [20] dataset, the Quad 6k
dataset [4], and Pytorch [27], all of which are cited in our
main paper. Pytorch uses a BSD license and the Urban-

Mill 19 - Building

US - SciArt US - Residence Quad 6K Mill 19 - Rubble

US - Campus

-

Mega-NeRF-Plenoctree

Mega-NeRF-Fast (ours)

Mega-NeRF-KiloNeRF

S il all
\ .

Mega-NeRF-Full Plenoxels

Figure 13. Additional interactive rendering results.

Scene3D dataset is freely available for research and educa-
tion use only. The Quad 6k dataset does not include an ex-
plicit license but is freely available at http://vision.
soic.indiana.edu/projects/disco/.

H. Dataset statistics

Visibility. We generate the visibility statistics in Table 1
by first training a NeRF model for each scene. As in Sec. A,
we compute and store opacity values into a fixed resolution
structure and project camera rays for all images in the scene.
We then measure the proportion of surface voxels each im-
age’s rays intersects relative to the total number in the scene.

Additional datasets. We provide top-level statistics for
commonly used view synthesis datasets in Table 7 to com-
plement those in Table 1.

I. Additional results

We include additional interactive rendering results
across all datasets in Fig. 13 to complement those in Fig. 7.

Resolution # Images # Pixels/Rays
Synthetic NeRF [24] 400 x 400 400 256,000,000
LLFF [23] 4032 x 3024 41 496,419,840
Light Field [47] 1280 x 720 214 195,910,200
Tanks and Temples [17] 1920 x 1080 283 587,658,240

919 x 794 1708

4608 x 3456 1809
1708 x 1329 5147
5232 x 3648 3824

1,149,113,846

28,808,773,632
11,574,265,679
74,102,106,112

Phototourism [15]
Mill 19

Quad 6k [4]
UrbanScene3D [20]

Table 7. Comparison of datasets commonly used in view synthesis
(above) relative to those evaluated in our work (below). We aver-
age the resolution, number of images, and total number of pixels
across each captured scene. We report statistics for Light Field and
Tanks and Temples using the splits in [48] and [45] respectively.
For Phototourism we average across the scenes used in [21].

http://vision.soic.indiana.edu/projects/disco/
http://vision.soic.indiana.edu/projects/disco/

