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S1 Harmony with Sum of Squared Errors

Let x and x′ be single dimensional real valued random variables. These random variables are i.i.d. trans-
formed by transforming x(og) by randomly drawn transformations from K. Further, let x̄z and x̄k denote
Ex[xz] and Ex[xk] respectively - note that xz and xk are functions of x. Additionally, we choose D(1),D(2),
and D(3) to be squared errors.

Lemma S1.1. E[(xk − x′k′)2] = 2 · V[xk]

Proof.

E[(xk − x′k′)2] = E[((xk − x̄k) + (x̄k − x′k′))2]

= 2 · E[(xk − x̄k)2] + 2 · E[(xk − x̄k)(x̄k − x′k′)]
= 2 · V[xk]− 2 · E[(xk − x̄k)]2 [i.i.d.]

= 2 · V[xk]− 2 · 0
= 2 · V[xk]

�

Lemma S1.2. E[(xz − xk)2] = V[xz]− 2 · Cov(xz, xk) + V[xk] + (x̄z − x̄k)2

Proof.

E[(xz − xk)2] = E[((xz − x̄z) + (x̄z − x̄k) + (x̄k − xk))2]

= E[(xz − x̄z)2] + E[(x̄z − x̄k)2] + E[(x̄k − xk)2]

+ 2 · E[(xz − x̄z)(x̄z − x̄k)] + 2 · E[((xz − x̄z)(x̄k − xk)]

+ 2 · E[(x̄z − x̄k)(x̄k − xk)]

= V[xz] + (x̄z − x̄k)2 + V[xk] + 2 · 0− 2 · Cov(xz, xk) + 2 · 0
= V[xz]− 2 · Cov(xz, xk) + V[xk] + (x̄z − x̄k)2

�

Proposition S1.3. E[L(x, x′)] ∝ V[xz]− 2 · Cov(xz, xk) + (1 + λ) · V[xk] + (x̄z − x̄k)2

Proof.

E[L(x, x′)] = 2 · E[(xz − xk)2] + λ · E[(xk − x′k′)2]

= 2 · E[(xz − xk)2] + 2λ · V[xk] [by S1.1]

∝ E[(xz − xk)2] + λ · V[xk]

= V[xz]− 2 · Cov(xz, xk) + V[xk] + (x̄z − x̄k)2 + λ · V[xk] [by S1.2]

= V[xz]− 2 · Cov(xz, xk) + (1 + λ) · V[xk] + (x̄z − x̄k)2

�

In the general case when x and x′ are d dimensional and D(1),D(2),D(3) are the Sum of Squared
Errors (SSE). The covariance and variances described above become index wise. Further, due to linearity
of expectation, in expectation, the loss becomes a sum of the expression in Proposition S1.3 over the
dimensions, d.

Define a transformation function T : X × K → X to be reversible if and only if for any x ∈ X and
k ∈ K there exist parameters k+ such that T (T (x, k), k+) = x – many commonly used transformation
functions such as rotating, scaling, and shifting are reversible.

Lemma S1.4. If T is reversible, for any similar x and x′ there exist parameters k+, k
′
+ such that

T (x, k+) = T (x′, k′+)
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Proof.

∃k, k′ ∈ K : x = T (x(og), k) ∧ x′ = T (x(og), k′) [similarity]⇒
∃k, k′ ∈ K∃k+, k′+ ∈ K : x(og) = T (T (x(og), k), k+)

∧ x(og) = T (T (x(og), k′), k′+) [reversibility]⇒
∃k+, k′+ ∈ K : T (x, k+) = T (x′, k′+)

�

Observe, when D(2) is the sum of squared errors, E
[
D(2)(xk, x

′
k′)

]
= 0, which is it’s minimum, if and

only if for any ε > 0 P (xk =ε x
′
k′) = 1. As a consequence, E

[
D(2)(xk, x

′
k′)

]
achieves its minimum if and

only if there exists some x(p) such that P
(
xk =ε x

(p)
)

= 1.

Proposition S1.5. There exists f such that E
[
D(2)(xk, x

′
k′)

]
is minimized

Proof. Consider f∗ : X → K × Ψ such that for any transformed instance of x(og), x, for f∗’s decoded
parameters (kx, ψx) = f∗(x), we have T (x, kx) = x(og) – such an f∗ exists by S1.4. Then, setting x(p) =
x(og) gives P

(
xk =ε x

(p)
)

= 1, so E
[
D(2)(xk, x

′
k′)

]
= 0, which is its minimum. �

As a consequence, for a sufficiently expressive parameter space Θ, if the transformation function T is
reversible, Harmony’s encoder fθ can minimize the dissimilarity loss D(2) (once such example of a minimizer
is fθ = f∗), and this minimum is achieved if and only if for every original sample x(og) and all of its randomly
transformed instances x every proposed re-transformed instance xk is arbitrarily close to x(p) (except for
a set of 0 measure).

S2 Datasets

S2.1 2D single-particle cryo-EM datasets

Cryo-EM is an imaging technique that images multiple 2D projections of protein paticles after isolating
and purifying them. It recovers high-resolution structure of known type of protein particles. The primary
use of cryo-EM imaging is to determine electron density of the protein complexes from these set of 2D
projection images. Since the purified proteins lay in random poses and shifts on the grid, the 2D view
of the proteins are also confounded with a variety of orientations and shifts. Decoupling the orientations
and shifts from the images and aligning them to recover better resolution structure is a crucial task in
structural bioinformatics.

In our experiments to this end, we tested Harmony against two negative stain cryogenic electron mi-
croscopy (cryo-EM) image dataset. Among the two datasets, one contains the StrepMAB-Classic antibody
and the other contains the CODH/ACS protein complex. Each image is 40 by 40 pixels and has a very
low signal to noise ratio. To use a setting similar to spatial-VAE [1], the antibody dataset was split into
10,821 training and 2,705 testing images and the CODH/ACS dataset was split into 11,473 training and
2,868 testing images.

S2.2 3D cryo-ET subtomogram datasets

Cryo-Electron Tomography (cryo-ET) produces 3D views of cellular samples at nanometer resolution (< 4
nm) [13]. In cryo-ET, the cellular samples are not isolated and purified like cryo-EM. So the native
organization of subcellular components remain intact. The cellular samples first vitrified at cryogenic
temperature (< −150◦C) and the sample is placed in a grid and thinned by cryo-focused-ion-beam milling
[8]. Then the cellular sample is placed under a cryo-transmission electron microscope and electron beams
are passed through it. The electrons are then detected by an electron detector. The detection results in
a projection image. The projection image is formed as electrons are less likely to pass through a thick
structural region. In cryo-ET, the cell sample is tilted through a series of angles, typically at 1◦ to 3◦ tilt
step. At each angle view, a projection image is produced. From the projection images, whole 3D tomogram
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is reconstructed. The reconstructed tomogram is of very large size, so the analysis is performed mainly
on subtomogram level. Subtomograms are small subvolumes extracted from the whole 3D tomogram.
Each subtomogram contains only one entire macromolecule. Subtomograms are extracted by biologists
annotation or particle picking.

We tested 3D Harmony against five realistically simulated benchmark datasets by Zeng et al.[15] and
a real cryo-ET subtomogram dataset by Qiang et al. [6]. The simulated dataset contains 5000 subtomo-
grams of five representative macromolecular complexes: spliceosome (PDB ID: 5LQW), RNApolymerase-
rifampicin complex (1I6V), RNA polymerase II elongation complex (6A5L), ribosome (5T2C), and capped
proteasome (5MPA). There are 1000 subtomograms for each representative macromolecular classes in di-
verse orientations and shifts. Among the five simulated datasets, one is relatively clean (SNR 100) and
four are with SNR close to the experimental conditions (0.1, 0.05, 0.03, and 0.01). Each subtomogram is
of size 323 with voxel size 1.2 nm.

We further validated Harmony’s efficacy against real cryo-ET subtomograms extracted from rat neuron
culture [6]. In total 1095 ribosome subtomograms and 1527 double capped proteasome subtomograms were
extracted by template matching [2] and biology expert annotation. Each subtomogram is of size 323 with
voxel size 1.368 nm and 30◦ missing wedge (tilt angle range −50◦ to 70◦).

S2.3 MNIST images

We tested Harmony against full MNIST dataset, and also a rotated, translated, and scaled version of
MNIST digits. We created the later to assess whether Harmony can disentangle full affine matrix. To this
end, we randomly picked a image for each digit class in MNIST and created randomly rotated (by angle
uniformly sampled between [−π, π]), translated (by random shifts uniformly sampled between [−4, 4]), and
scaled (by scale factors uniformly sampled between [0.5, 1.5]) copies for each digit. This resulted in a total
of 30,000 digits.

S2.4 CelebA RGB Facial Images

For lighting condition (contrast) disentangling, we created a variant of celebA RGB image dataset. To this
end, we randomly picked 10 images of 10 different facial identities in the celebA dataset. The images are
218 by 178 by 3 pixels (RGB). We down sampled the images to 128× 128 for faster training with minimal
affect on image quality. Then we changed contrast of the images with contrast factors uniformly sampled
between [0.5, 3]. A contrast factor of 0 generates a complete blank image and a contrast factor higher
than 3 tends to destroy the facial identity of the image. Consequently, [0.5, 3] was a reasonable range. We
generated 10, 000 images in total where each facial identity has an equal amount of transformed images.

S3 Implementation Details

We applied Harmony to disentangle parameterized transformations from two real cryo-EM datasets, several
simulated and real 3D cryo-ET subtomogram dataset, MNIST and its variant datasets, and a variant of
celebA facial image dataset. We used Convolutional Neural Networks (CNN) or Multilayer Perceptrons
(MLP) to implement the encoder fθ and decoder gφ in our experiments with image data (Figure S1. We
used kornia [12], an open source computer vision library in PyTorch, to implement the differentiable
transformation operations, e.g., translation, rotation, scale, contrast, etc. Kornia’s implementation uses
spatial transformer [10] with bilinear interpolation for warping images to the applied transformations.
We have used sum of squared errors (SSE) to measure image dissimilarity in Harmony’s objective. We
used β-VAE [7], Annealed-β-VAE [7], β-TC-VAE [4], and U-VIATE [5] as baseline models. As SpatialVAE
disentangles content from translation and rotation explicitly for cryo-EM datasets, we compared our results
with Spatial-VAE [1] and a 3D extension of Spatial-VAE [1] for cryo-EM and cryo-ET datasets respectively.
All models were implemented in PyTorch. We trained the models using ADAM optimizer [11] with a
learning rate of 0.0001 and a minibatch size of 100. Only for 3D implementation of spatial-VAE, we had
to use minibatch size of 20 as larger batch size than that was causing memory issues. We used 3 NVIDIA
RTX 3090 GPUs to train our models.
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S3.1 Encoder and Decoder Architectures

The architectures for Harmony’s encoder and decoder used in our experiments with imaging data are
provided in Fig.S1. However, because Harmony is a general framework, different architectures are also
suitable and our current architecture does not necessarily generate the best performance among all possible
model architectures.

Conv + Tanh
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FC + Tanh 
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Image

φ

z

Image

Conv + Tanh

Conv + Tanh

Conv + Tanh

φ

Image

FC + Tanh 

Trans Conv 
+ Tanh

Trans Conv 
+ Tanh

Trans Conv 
+ Tanh

Trans Conv 
+ Tanh

Trans Conv 
+ Tanh

z

FC + Tanh 

FC + Tanh

FC + Tanh 

FC + Tanh 

FC + Tanh 

Image

FC Encoder FC Decoder Conv DecoderConv Encoder

Figure S1: The encoder-decoder architecture for Harmony used in our experiments

S3.2 Choice of hyperparameters

There are a number of hyperparameters associated with Harmony. One of them is the dimension of semantic
latent factor z. As 1-D z is enough to capture the variability of the semantic contents in the our datasets
(except simulated cryo-ET), we set this to 1 in our experiments. In most of our experiments, increasing
the dimension more than 1 does not significantly change the disentanglement. In Figure S3, we have
demonstrated the effect of dimension of semantic latent factor z on disentanglement score for disentangling
translation and rotation from the whole MNIST dataset. For simulated cryo-ET, setting the dimension as
50 provided best results. A hyperparameter introduced in our objective function is γ. We have observed
setting γ too low ( 1) gives poor disentanglement. However, after a certain threshold, changing γ does not
affect the overall disentanglement. The effect of γ on disentanglement score for disentangling translation
and rotation from the whole MNIST dataset is demonstrated in Figure S2. In our experiments, we set γ
as M

N×1000 , where M is the number of data points and N is the batch size.
Another hyperparameter set is the transformation parameters k ∈ K, that we use to create dis-

torted inputs for Harmony. In the case of rotation, the parameter sampled from Uniform(−45◦, 45◦) or
Uniform(−90◦, 90◦) all resulted in similar results. For transformations like translation, scaling or lighting
conditions, we use an appropriate uniform distribution range that does not change the semantic meaning
of the images (translate it out of frame or contrast it so low that it becomes a blank image) as output.

S3.3 Effect of hyperparameters in disentangling
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Figure S2: Plot of SAP score vs γ while keeping all other factors fixed.

Figure S3: Plot of SAP score vs dimension of latent factor while keeping all other factors fixed.

S4 Ablation Experiments

We performed ablation experiments to demonstrate the contribution of the individual modules in Harmony.
Particularly, we demonstrated the importance of per dimensional KL divergence in objective function and
the cross-contrastive setting. Hence we evaluated two models- (i) Harmony without per dimensional KL
loss in objective, (ii) Harmony without any augmented branch (with objective as D(1)(xz, xk)). In Table
S1, we demonstrate the results of our ablation experiments against the 30,000 rotated, translated, and
scaled version of MNIST digits and 10,000 diversely contrasted version of celebA images of 10 distinct
facial identities. The results confirm the contribution of each individual modules in Harmony.

Method Dataset SAP P (c | z)
Harmony (no cross-contrastive) MNIST (rotated, translated, scaled) 0.46 0.8796

CelebA (contrast) 0.1628 0.7473
Harmony (no KL) MNIST (rotated, translated, scaled) 0.5283 0.9118

CelebA (contrast) 0.5554 0.9981
Harmony MNIST (rotated, translated, scaled) 0.55 0.944

CelebA (contrast) 0.5586 1.0

Table S1: Results from Ablation Experiments
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S5 Additional Results

S5.1 Additional Results on Full Vanilla MNIST

We used Harmony to disentangle translation and rotation from full mnist dataset. From the images
interpolated from semantic latent manifold of Harmony, it is evident that Harmony could successfully
disentangle rotation and translation from digits (please note, it does not aim to disentangle digit writing
style). From images interpolated from β-VAE or vanilla-VAE (β=1) it is evident that traversing along any
of the latent axis would not generate digits unaffected by rotation and translation.

(a) (b) (c)

Figure S4: Disentangling rotation and translation from full original MNIST dataset. (a) shows some sample
input images. (b) shows the images generated from semantic latent space generated by Harmony (with
γ = 70 and dimension of z set as 2) (c) shows the images generated from the latent space of β-VAE.
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S5.2 Additional Results on cryo-EM datasets

(a) (b) (c)

(d) (e) (f)

Figure S5: Learning Transformation Invariant Representation of protein complexes from cryo-EM images
using Harmony. (a) and (d) shows exemplary cryo-EM images of CODH/ACS protein and antibody protein
conformations respectively. (b) and (e) demonstrates the interpolated protein conformations from latent
manifold learned by SpatialVAE [1] (dimension of semantic latent factors=2) for CODH/ACS dataset and
antibody dataset respectively. (c) and (f) depicts the interpolated protein conformations from latent man-
ifold learned by Harmony (dimension of semantic latent factors=1) for CODH/ACS dataset and antibody
dataset respectively. Harmony can extract and align the conformations very well from the noisy images
while performing denoising by the decoder. The SpatialVAE visualizations are generated by removing
the orientation from the observed images. Further, random rotation augmentations were applied to the
inference network training in Spatial-VAE to ensure its robustness. Nevertheless, spatial-VAE tends to
capture structure in the image background and sometimes learn inconsistent representations for antibody
dataset. None of these problems are encountered in Harmony.
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S5.3 Additional Results on cryo-ET datasets

To cluster the simulated subtomograms, we have applied simple K-neareast neighbor algorithm (with k=5)
to the semantic latent factor encoded by Harmony. In Table S2, we have compared the clustering results
with state-of-the-art clustering methods. The accuracy values for other methods are taken from recent
work by Zeng et al [14]. Cluster-only methods are taken into account only. After disentangling semantic
content by Harmony, just performing a simple K-nearest neighbor on semantic latent factor gives better
performance than many sophisticated deep clustering methods like DeepCluster and PICA. The results
demonstrate the importance of disentangled representation learning in semantically meaningful feature
extraction.

Method SNR 100 SNR 0.1 SNR 0.05 SNR 0.03 SNR 0.01
DeepCluster [3] 68.7 48.8 39.4 34.0 27.2

PICA [9] 100 86.5 55.8 29.2 28.4
JimNet (cluster) [14] 99.5 77.5 62.8 51.3 35.3

Harmony + KNN 99.6 86.1 63.0 52.7 47

Table S2: Comparison of Harmony+KNN with state of the art deep clustering methods on simulated
subtomograms.

The disentanglement by Harmony can be also used for coarse and fast alignment. However, unlike the
subtomogram alignment methods, that align subtomogram to a density map or high resolution subtomo-
gram, Harmony performs coarse and fast group wise alignment of subtomograms. For some specific classes,
we have observed (Figure S6) the alignment is close to fine alignment. By performing groupwise alignment,
it can create initial models for structural refinement [16].

Figure S6: Detailed view of Unsupervised Coarse and Fast Subtomogram Alignment through disentangling
3D rigid body transformations from semantic content. (a) Sample 2D central slice images of RNA poly-
merase (PDB 1I6V) (above) and Ribosome (PDB 5T2C) (below) subtomograms from simulated dataset
with SNR=100. (b) Corresponding output images from semantic latent space only (disentangled from
transformations)
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