
J,C 3 3 3 3 7 7 7 7 3 3 3 7 3 7 7

H 3 3 3 7 3 7 3 3 7 7 3 7 7 3 7

K 3 3 7 3 3 3 7 3 7 3 7 3 7 7 7

L 3 7 3 3 3 3 3 7 3 7 7 7 7 7 3

4 32 33 32 45 32 48 33 32 45 45 32 46 45 34 nan
3 36 35 36 49 37 50 38 39 49 50 37 50 49 44 nan
2 44 44 46 53 43 59 40 56 53 58 45 55 51 45 nan

Table 3. Ablation – PMPJPE↓ of our method on Human3.6M
with different number of cameras with different inputs passed to
the neural optimizer. Heatmap H contributes most to the final
performance, but all inputs are necessary to achieve the state-of-
art performance.
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7.2. Ablation Tables

• Table 3 shows the performance of the neural optimizer
trained with different subsets of inputs;

• Table 4 shows the latency breakdown across model com-
ponents and models;

• Table 5 shows that the performance of equivariant
(S1+S2) and non-equivariant (S1+S2/MLP) models dif-
fers by at most 4mm on both datasets;

• Table 6 shows that MetaPose outperforms prior work
with corresponding supervision signals;

• Table 7 shows that the personalized bone length prior im-
proves the performance of both the iterative and neural
refiners in the majority of cases;

• Table 8 shows that the student-teacher loss inspired by
Ma et al. [45] to draw the predicted solution into the cor-
rect basin of the loss hurts the performance in all cases;

• Table 9 summarizes reference performance of monocu-
lar pose estimation components across different splits of
data (train, val, test) for reproducibility, and shows strong
overfitting on SkiPose;

• Table 10 shows that at least 20mm of error is due to im-
perfect heatmaps, up to 10mm is due to the weak camera
model, and only up to 3mm is due to imperfect init;

• Table 11 shows that on H36M with just 1/5th of the entire
training dataset (i.e. 5k labeled training samples, each
sample containing several cameras) we can get a model
that achieves PMPJPE within 5-10mm of the performance
we achieve on full data.

• Table 12 shows the effect of varying the number of Gaus-
sian mixture components on the performance of different
methods.

7.3. Extended Results

A TensorFlow implementation, videos with predictions on
Human36M and SkiPose, additional tables with camera es-
timation errors, as well as qualitative results on KTI Foot-
ball [34] dataset can be found on our project website:
https://metapose.github.io/.

7.4. Extended Related Work

Human body priors. Early methods [43] for human pose
estimation from uncalibrated video streams relied on con-
servation of length between rotational joints (i.e. bones
lengths) over time. Current state-of-the-art methods use
parametric full-body priors based on skinning and blend
shapes learned from thousands of 3D body scans of real
subjects, such as SMPL [44] and SMPL-X [51]. SMPLy
[42] is a common algorithm and a common benchmark for
monocular 3D pose estimation using SMPL. Many pose es-
timation models utilize strong prior of SMPL [44] to im-
prove the downstream performance in other setups. For ex-
ample, Arnab et al. [5] performs bundle adjustment over
estimated SMPL parameters and 2D poses aggregates over
time to account for temporal consistency. Dong et al. [14]
used SMPL parameters estimated from many short videos
of subjects performing the same action from different view-
points found on the internet (e.g. squat, tennis serve, etc.) to
build a better model of these actions that accounts for self-
occlusion present in individual videos. MonoClothCap [64]
adds a deformable clothing model on top of SMPL [44] and
an off-the-shelf CNN trained to estimate surface normals
from individual frames.
Learnable optimizers. Starting from the seminal work of
Andrychowicz et al. [4], several works proposed training
LSTM-based general purpose neural optimizers. For ex-
ample, LS-Net [12] is an LSTM-based neural solver that
predicts a sequence of updates for estimated depth maps
and camera poses from a continuous RGB video. LS-
Net takes task-specific Hessian approximations as input and
uses ground truth depths and poses for supervision. More
recent examples include RAFT [58] that uses a recurrent
transformer to estimate optical from from a video by com-
puting a full 4D cross-frame correlation volume and itera-
tively refining the optimal flow to minimize the error with
respect to the ground truth flow using a learned optimizer.
Neural solvers for ill-posed problems. Adler and Öktem
[1] rigorously analyzed how learned parametric (neural) up-
dated schemes affect the performance of inverse solvers
in the ill-posed inverse tomography setup and proposed
the learned gradient decent (LGD). Adler and Öktem [2]
showed that replacing a proximal operator in the proximal
primal-dual optimization schemes further improves the per-
formance of inverse solvers on the inverse tomography task
and leads to faster convergence. For example, DeepView



PoseNet GMM S1 Solver Total Error [mm]

AniPose 0.03 · 4 - - 7 7.1 75
MetaPose (S1) 0.03 · 4 - 0.01 · 4 - 0.15 74
MetaPose (S1+S2) 0.03 · 4 0.01 · 4 0.01 · 4 0.006 0.2 40
MetaPose (S1+IR) 0.03 · 4 0.01 · 4 0.01 · 4 1.5 1.7 43

AniPose 0.5 · 4 - - 10 12 75
MetaPose (S1) 0.5 · 4 - 0.20 · 4 - 2.8 74
MetaPose (S1+S2) 0.5 · 4 0.25 · 4 0.20 · 4 0.01 4 40
MetaPose (S1+IR) 0.5 · 4 0.25 · 4 0.20 · 4 3.5 7.5 43

Table 4. Latency breakdown in seconds for estimating the full 3D pose on H36M with four cameras on a GPU (V100, top) and a CPU
(bottom) across four components: per-view 2D heatmap estimation (PoseNet), heatmap GMM fitting, per-view monocular 3D and ini-
tialization, multi-view bundle adjustment (neural network forward pass in case of MetaPose S1+S2, Adam [35] in case of S1+IR, and a
2nd-order CPU-only TRR [7, 9] solver in case of AniPose). MetaPose (S1+S2) achieves lowest error with an at least six times (on GPU;
two times on CPU) faster inference as the iterative refiner.

[16] uses these ideas to accelerate inference of multi-plane
images (MPIs) with LGD. Song et al. [56] also used LGD
to accelerate fitting of SMPL [44] human body model to
monocular images of human subjects.

7.5. Weighted EM-algorithm for spherical GMM

We used grid points xi weighted by corresponding prob-
abilities pi to fit a GMM to a 2D probability heatmap. Fol-
lowing Frisch and Hanebeck [17] on each step t = 0 . . . T
of the EM algorithm we performed usual (non-weighted)
E-step to compute the new assignment matrix η

(t+1)
i,m be-

tween points xi and spherical clusters m = 0 . . .M with
means µ(t)

m , and standard variations σ(t)
m , and weights w(t)

m ,
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w
(t)
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m , σ
(t)
m · I)∑

m′ w
(t)
m′N (xi|µ(t)
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where N (x|µ,Σ) is a two-dimentional Gaussian pdf, fol-
lowed by a weighted M-step:
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7.6. Camera model

First, weak camera model enables closed-form estimation
of camera parameters from monocular 3D pose estimates
in Stage 1, as shown in Section 7.8. Moreover, the weak
is easier to use as a part of a learning algorithm, since it
avoids re-projection singularities during training (e.g. when

predicted joint depth approaches zero). More specifically,
with the weak camera model, we can avoid singularities
by replacing the problematic f/Zavg term with a single in-
ferred non-negative scale, as discussed in the beginning of
Section 3. This is not an issue for AniPose because there
is no training involved, and it is initialized with GT cam-
era parameters making singularities extremely unlikely. In
prior work, Imry Kissos et al. [23] and Kocabas et al. [39]
showed that estimating camera parameters from images and
using full perspective projection with SMPL [44] yields re-
sults superior to the classical weak-camera SMPL.

7.7. Implementation Details

Progressive training of refinement steps. Expanding upon
the “progressive” training in Eq. (16): the first refinement
step network F (1)

θ is first trained to predict residuals of
pose/camera parameters that minimize the reprojection loss
(16) starting from the initial guess (S1). The second refine-
ment step networkF (2)

θ is trained analogously - to minimize
the reprojection loss (16), but starting from the fixed guess
of the first network - no backprop to the first network F (1)

θ .
Architecture. For monocular 2D pose estimation we used
the stacked hourglass network [49] pre-trained on COCO
pose dataset [20]. We additionally trained a linear regres-
sion adapter to convert between COCO and H36M label
formats (see supplementary Figure 8 for labeling format
comparison). The resulting procedure yields good gener-
alization on H36M, as shown in supplementary Table 9).
The COCO-pretrained network generalized very poorly to
SkiPosePTZ dataset because of the visual domain shift, so
we fine-tuned the stacked hourglass network using ground
truth 2D labels. For monocular 3D estimates used in
Stage 1, we applied EpipolarPose [37] on Human3.6M and
CanonPose [62] on SkiPosePTZ. We would like to note that,
despite the significant shift in the labeling format between



Figure 8. Both H36M ground truth poses, COCO dataset (used to
train the hourglass network), and EpipolarPose predictions (used
to generate the 3D initialization) have different label formats from
H36M. We trained a small “adapter” to convert COCO-to-H36M,
and used EpipolarPose predictions as-is.

predictions of these monocular 3D methods and the format
used in datasets we used for evaluation, this does not affect
the quality of camera initialization we acquired via rigid
alignment. Similar to prior work [45], each “neural opti-
mizer step” is trained separately, and the fresh new neural
net is used at each stage, and stop gradient is applied to all
inputs. For MLP architecture, we used L fully-connected
512-dimensional layers followed by a fully-connected 128-
dimensional, all with selu with L=4 for H36M and L=2 for
SkiPose. For equivalent network, the optimal network for
H36M had following layers: [512, 512, CC, 512, 512, CC,
512] and for SkiPose had following layers: [512, 512, CC,
512, 512, CC, 512, 512, CC, 512, 512, CC, 512] - where
CC corresponds to concatenation of first two moments and
numbers correspond to dense layers with SeLU [36]. We re-
trained each stage multiple times until the validation PM-
PJPE improved or the total number of “stage training at-
tempts” exceeded 100.

Hyperparameters. We used Adam [35] optimizer with
learning rate 1e-2 for 100 steps for exact refinement, and
1e-4 for the neural optimizer.

Reference 2D performance. Tables 9 shows performance
of 2D pose prediction networks and the resulting MetaPose
network on different splits of different datasets. It shows
that both the 2D network and MetaPose to certain degree
overfit to SkiPose because of its smaller size.

7.8. Closed Form Expressions for Stage 1

Below we describe the solution to the rigid alignment
problem (12) for monocular 3D pose estimates qc and in-
ferred weak camera parameters from them. Assume that we
have monocular 3D predictions qc in frame of the camera c.
The parameters of the first camera are assumed to be known
and fixed

R
(0)
init =I, t

(0)=0̄, s(0)=1

whereas the rotation of other cameras are inferred using op-
timal rigid alingment R(c)

init = (U (c))TV (c) where

U (c),Λ, V (c) = SVD(centered(qc) · centered(q0))T )

The scale s and shift t can be acquired by com-
paring the original monocular qc,[:,0:2] in pixels to
[R

(c)
init centered(q0)][:,0:2] rotated back into each camera

frame, for example:

s
(c)
init =

||[(R(c)
init)

T centered(q0)][:,0:2]||
|| centered(qc)[:,0:2]||

(20)

t
(c)
init =µ̂([(R

(c)
init)

T centered(q0)][:,0:2])− µ̂([qc][:,0:2]))
(21)

where µ̂(a) = (
∑K
k ak)/K is the center of the 3D pose and

centered(a)k = (ak − µ̂(a)) and the initial pose estimate
is the average of aligned, rotated and predictions from other
cameras. The initial guess for the pose is the average of all
monocular poses rotated into the first camera frame:

Jinit =
1

C

C∑
c=0

(s
(c)
init ·R

(c)
init centered(qc)) + µ̂(q0) (22)

7.9. 6D rotation re-parameterization

We used for following parameterization: R(x, y) =
stack[n(x), n(x× y), n(x× (x× y))] where n(x) is a nor-
malization operation, and a× b is a vector product. This is
essentially Gram-Schmidt orthogonalization. Rows of the
resulting matrix is guaranteed to form an orthonormal basis.
This rotation representation was shown to be better suited
for optimization [70].

7.10. Stable Gaussian Mixture Likelihood

We used the following numerically stable spherical
GMM log-likelihood to compute (6):
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where (µ, σ2, w) are mean, variance and weight of the
corresponding mixture component, LSE(l0, . . . , lr) is a
numerically stable “log-sum-exp” often implemented as
LSE(l0, . . . , lr) = l∗ + log(

∑
k exp(lk − l∗)), where l∗ =

max(l0, . . . , lr), and ε is a small number.

7.11. Teacher loss

In addition to the reprojcetion loss, the student-teacher
ablation (S2/TS) used the following additional loss inspired
by Ma et al. [45] to draw the predicted solution Jneur into
the basin of the correct solution by penalizing its deviation
from the solution Jref produced by the iterative refiner (IR).

Ly
(
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ref , t

(c)
ref , s
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ref )||22. (23)

Table 8 shows that it hurts the performance of the model.

7.12. Qualitative Results

We provide qualitative examples (failure cases, success
cases) on the test set of H36M and SkiPose in Figures 9-19.
Videos with more test prediction visualizations are available
at https://metapose.github.io/. Circles around joints on 2D
views represent the absolute reprojection error for that joint
for that view. Our qualitative findings:

1. MetaPose considerably improves over the initial guess
when a lot of self-occlusion is present

2. MetaPose fails on extreme poses for which monocular
estimation fails (e.g. somersaults)

3. In two-camera SkiPose setup, AniPose often yields
smaller reprojection error while producing very bad
3D pose results

7.13. Other 3D pose estimation datasets

To our knowledge SkiPose is the only publicly available
annotated multi-view dataset with moving cameras actively
used in recent prior work. For example, H36M [24], CMU
[28], 3DHP [47], Shelf&Campus [6], TotalCapture[59] -
all have fixed cameras. [57] and [8] used internal datasets.
KTI Multiview Football [34] is an older and smaller dataset
that has not been used for quantitative evaluation in the
past eight years, precluding meaningful comparison to prior
work. Analogously to [26] additional qualitative results
on KTI Multiview Football dataset that can be found in
the extended supplementary (https://metapose.github.io/),
but no quantitative comparison to recent prior work can be
made.

7.14. Generalization error

The ability of our method to generalize to a new dataset
can be factorized into three components: generalization of
the off-the-shelf networks on new visual domains (already
verified in prior work), generalization of the neural opti-
mizer on new pose distributions, and to new camera config-
urations. We show that our method successfully generalizes
across pose distributions (greet/sit/call in H36M vs skiing
in SkiPose), and to differences between actors present in
train and test sequences of both H36M and SkiPose. We
also show that it consistently generalizes across two camera
setups (fixed short-focus in H36M, and moving long-focus
in SkiPose) and all subsets of given cameras in each setup.
Overall, prior work shows that the off-the-shelf components
of the proposed method successfully adapt to new visual do-
mains, and our experiments show that the neural optimizer
is resilient against the remaining sources of generalization
error. Moreover, Wang et al. [63] showed that models that
jointly predict camera parameters and 3D poses better gen-
eralize to novel visual domains.



(a) H36M

Method 4 3 2

Metapose (S1+S2) 32 36 44
Metapose (S1+S2/MLP) 30 35 41

(b) SkiPose

Method 6 4 2

Metapose (S1+S2) 42 45 50
Metapose (S1+S2/MLP) 46 44 54

Table 5. Equivariant (S1+S2) and non-equivariant (S1+S2/MLP) performance networks have comparable performance across different
numbers of cameras on H36M (top) and SkiPose (bottom).

(a) H36M

Method and supervision type PMPJPE↓ NMPJPE↓ ∆t
[s]4 2 4 2

Isakov et al. [26] 3D 20.8 - - - -

AniPose [33] w/ GT S 74.6 167.3 103.1 229.8 7.1
Rhodin et al. [53] 2/3D 65.1 - 80.1 - -
CanonPose [62] S 53.0 - 81.9 - -
EpipolarPose (EP) [37] S 70.7 - 77.7 - -
Iqbal et al. [25] 2D 54.5 - 64.5 - -

MetaPose (S1) S 74.3 87.2 83.4 94.8 0.2
MetaPose (S1+S2) 2D 32.1 44.2 48.8 54.6 0.2
MetaPose (S1+IR) S 43.2 65.9 52.8 75.4 1.7
MetaPose (S1+S2/SS) S 39.2 50.4 55.9 63.3 0.2

(b) SkiPose

Method and supervision type PMPJPE↓ NMPJPE↓ ∆t
[s]6 2 6 2

AniPose [33] w/ GT S 50.3 62.4 220.8 272.7 7.1
Rhodin et al. [53] 2/3D - - 85.1 - -
CanonPose (CP) [62] S 89.6 - 128.1 - -

MetaPose (S1) S 81.2 86.4 140.3 143.7 0.3
MetaPose (S1+S2) 2D 42.1 49.9 53.2 59.3 0.4
MetaPose (S1+IR) S 30.3 77.1 53.7 94.2 2.5
MetaPose (S1+S2/SS) S 42.4 94.9 59.3 101.8 0.4

Table 6. MetaPose outperforms SotA on H36M (top) and SkiPose (bottom) – Same notation as in Table 1. Also includes the self-
supervised (S2/SS) and iterative solver (SS/IR) flavours of MetaPose. Supervision signal used during training: 2D - ground truth 2D
keypoints, 3D - ground truth 3D poses, S - self-supervision (i.e. using a pose estimation network pre-trained on a different dataset), 2/3D -
2D keypoint data with 3D poses on few subjects.



(a) H36M

Method 4 3 2

Metapose S1+S2 32 36 44
Metapose S1+S2 + bone 31 34 37

Metapose S1+IR 43 52 53
Metapose S1+IR + bone 38 44 47

Metapose S1+S2/SS 39 47 50
Metapose S1+S2/SS + bone 38 45 50

(b) SkiPose

Method 6 4 2

Metapose S1+S2 41 43 47
Metapose S1+S2 + bone 45 46 49

Metapose S1+IR 30 32 77
Metapose S1+IR + bone 26 28 46

Metapose S1+S2/SS 41 46 95
Metapose S1+S2/SS + bone 44 45 53

Table 7. Personalized bone lengths prior helps in all cases for H36M (top), especially in the few-camera setup; and in the majority of
cases on SkiPose (bottom).

(a) H36M

Method 4 3 2

MetaPose S1+S2 32 36 44
MetaPose S1+S2/TS 38 45 45

(b) SkiPose

Method 6 4 2

MetaPose S1+S2 42 45 50
MetaPose S1+S2/TS 42 43 72

Table 8. Teacher-student loss analogous to the one proposed by Ma et al. [45] to bring the neural optimizer into the basin of the correct
solution either hurts or does significantly affect the performance in all cases.



Metric Train Validation Test

GT log-prob. -5.17 -5.58 -5.06

Stage: S1 S1+IR S1+S2 S1 S1+IR S1+S2 S1 S1+IR S1+S2

Pred log-prob. -4.22 -5.86 -5.00 -4.6 -6.07 -5.41 -3.92 -5.77 -4.95
PMPJPE [mm] 69 38 15 65 34 17 74 43 32
NMPJPE [mm] 78 58 36 69 56 46 88 66 49
MSE 2D (10−4) 15 5 0.6 6 2 0.6 20 7 5

(a) H36M

Metric Train Validation Test

GT log-prob. -5.49 -5.49 -4.81

Stage: S1 S1+IR S1+S2 S1 S1+IR S1+S2 S1 S1+IR S1+S2

Pred log-prob. -2.83 -5.79 -5.49 -2.90 -5.75 -4.51 -3.04 -5.59 -5.33
PMPJPE [mm] 71 17 1 72 17 10 80 30 42
NMPJPE [mm] 139 35 1 143 38 15 140 54 53
MSE 2D (10−4) 34 6 0.01 37 6 1 30 7 7

(b) SkiPose

Table 9. Details about predictions across different stages: initialization using monocular 3d (S1), iterative refinement (S1+IR), and
neural refinement (S1+S2) on H36M with four cams (top) and SkiPose with six cams (bottom). 2D error is scaled so that the entire
pose lies in [0, 1]2. The GT log probability is the log probability of ground truth points given predicted heatmaps and measures how well
heatmaps generated by our 2D prediction network match the ground truth. Significantly larger discrepancy between GT log probabilities
on train and test on SkiPose shows that 2D pose network overfits much more on SkiPose than on H36M due to its limited size.

(a) H36M

Method 2D S1 4 3 2

S1+IR HT EP 43 52 53
S1+IR HT GT 40 49 48
S1+IR full-GT EP 17 20 24
S1+IR full-GT GT 14 16 20
S1+IR weak-GT EP 4 6 18
S1+IR weak-GT GT 1.4 1.7 2

(b) SkiPose

Method 2D S1 6 4 2

S1+IR HT CP 30 33 77
S1+IR HT GT 28 30 41
S1+IR full-GT CP 8 8 29
S1+IR weak-GT CP 8 7 28

Table 10. MetaPose S1+IR trained with either ground truth pseudo-heatmaps centered around full and weak-projected 3D joints and with
different S1 initialization (either predicted via EpipolarPose or “perfect”). This experiment shows that imperfect heatmaps contribute to
at least 20mm of error in both cases, weak camera model contribute to 10mm of error on H36M and no error on SkiPose, and imperfect
initialization contributes to at most 3mm of error.



# cam
% 100 89 84 79 73 68 63 58 52 47 42 37 31 29 26 24 21 18 16 13 10 8 5 3

4 32 32 32 32 33 36 33 35 33 35 34 42 37 39 36 38 36 41 48 41 41 44 48 70
3 36 35 36 37 37 36 37 39 37 37 38 39 40 39 41 45 42 43 44 45 46 51 53 70
2 44 48 48 47 46 48 48 40 54 60 43 43 51 57 53 58 54 50 52 48 48 51 68 87

Table 11. Test PMPJE of MetaPose on H36M as a function of the fraction of training examples with 2D ground truth used (i.e.
first X%). Reminder: we never use any ground truth 3D annotations for either cameras or poses, these are percentages of 2D labels used
for training. We can see that MetaPose produces high-accuracy predictions (within 10mm of the original performance) with up to 1/5-th
(≈18%) of the H36M training 2D pose annotations (≈5k training examples each containing multiple cameras). The few-camera setup
exhibits more variations in test error due to random network initialization.

(a) H36M

Method GMM 4 3 2

MetaPose S1+IR 4 43 52 53
MetaPose S1+IR 3 42 51 52
MetaPose S1+IR 2 42 51 52
MetaPose S1+IR 1 42 52 53
MetaPose S1+S2 4 32 39 44
MetaPose S1+S2 3 31 36 47
MetaPose S1+S2 2 32 36 50
MetaPose S1+S2 1 32 36 48

(b) SkiPose

Method GMM 6 4 2

MetaPose S1+IR 4 30 33 77
MetaPose S1+IR 3 30 32 77
MetaPose S1+IR 2 31 34 75
MetaPose S1+IR 1 43 43 58
MetaPose S1+S2 4 42 45 50
MetaPose S1+S2 3 44 41 50
MetaPose S1+S2 2 42 49 51
MetaPose S1+S2 1 41 43 47

Table 12. The number of Gaussian Mixture components does not significantly affect the performance of the network in all cases on both
SkiPose (top) and H36M (bottom), except for MetaPose S1+IR on SkiPose with a single Gaussian.



Figure 9. Full MetaPose (S1+S2) outperforms initialization (S1), Iterative Solver (S1+IR), and AniPose w/ GT camera init.



Figure 10. MetaPose improves over the initial guess under high self-occlusion.



Figure 11. MetaPose improves over the initial guess under high self-occlusion.



Figure 12. AniPose w/ GT camera initialization can yields low re-projection error but high 3D estimation error.



Figure 13. AniPose with GT init fails due to poor choice of 2D predictions to ignore during refinement.



Figure 14. MetaPose fails on few extreme poses that have much poorer than average initialization quality.



Figure 15. MetaPose improves over the initial guess under high self-occlusion.



Figure 16. MetaPose fails on poses that have much poorer (than average) initialization quality.



Figure 17. AniPose with GT init fails due to poor choice of 2D predictions to ignore during refinement.



Figure 18. With two cameras AniPose with GT camera init often yields low reprojection error but bad 3D estimation error



Figure 19. With two cameras AniPose with GT camera init often yields low reprojection error but bad 3D estimation error


