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This document supplements our submission Point2Cyl:
Reverse Engineering 3D Objects from Point Clouds to Extru-
sion Cylinders. In particular, we differentiate our work with
traditional primitive fitting (Sec. S.1), provide additional de-
tails and proofs and robustness of theorems from the main
paper (Sec. S.2), network details for our Point2Cyl (Sec. S.3),
implementation details of the baselines (Sec. S.4), data pre-
processing (Sec. S.5) and visualization post-processing de-
tails (Sec. S.6), and additional experiment comparisons, ab-
lations and failure cases (Sec. S.7).

S.1. Extrusion Cylinders vs. Traditional Primitives

Our work focuses on decomposing an object into extru-
sion cylinders, which are very common building blocks in
CAD design, covering > 80%/70% of the faces in existing
datasets [6, 7]. Extrusion cylinders are described by any
arbitrary closed loop and hence do not assume fixed/regular
geometry as in existing work that handle traditional dis-
crete/fixed primitives. Thus, they are not detectable by exist-
ing traditional primitive fitting works. For comparison, we
ran a pre-trained model of SPFN [8] on our test set, which
resulted to a fitting loss of 0.1111, compared to our 0.0305
in the main paper. By our primitive definition, our method
alone cannot be used to recover primitives such as spheres
and cones. An immediate solution is to integrate our method
with existing primitive fitting work, e.g. SPFN [8], to jointly
handle diverse types of primitives. We also make the dis-
tinction that our work recovers primitive volumes instead of
surfaces, from works such as SPFN [8] that requires further
stitching and cannot be used directly in boolean operations.
See illustration of a nut on the right in Fig. S5-
b. In SPFN, the single extrusion will be repre-
sented with nine surfaces: six side planes, two
top/bottom planes, and one inner cylinder.

S.2. Theorem Proofs and Robustness

S.2.1 Proof of Theorem 2

We start by a short summary of Theorem 2 of the main paper:

Theorem 2 (Weighted recovery of extrusion axis from
points). For a general weighted point set, the optimal extru-
sion axis is given by ê = argmine,||e||=1(e

⊤HΦe), where:

HΦ = N⊤Φ⊤
barrΦbarrN−N⊤Φ⊤

baseΦbaseN. (1)

where Φbarr = diag(ϕbarr),Φbase = diag(ϕbase) ∈ RN×N .
ϕbarr/ϕbase indicate the barrel/base weights assigned to all
points, respectively.

Proof. First, we use the observation in Eq. 1 of the main pa-
per to formulate an objective Le, whose minimum is attained
at the point where e is the best fitting extrusion axis. Next,
we show that Le can be re-organized absorbing the weights
into surface normals. Finally, we re-arrange the result into
matrix form to obtain HΦ. These steps read:
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= e⊤HΦe (4)

and therefore argmine Le = argmine e
⊤HΦe. Here,

scalars wi and wj can be viewed as matrices of size 1 × 1.
The second equality follows from gathering all the weights
into ϕ such that ϕbarr

i = 0 whenever i indicates a base point,
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Figure S1. Robustness under noisy point normals.

and vice versa. We collect those into vectors ϕbarr = {ϕbarr
i },

ϕbase = {ϕbase
i }. Eq (2) clearly shows that the weights that

control the contribution of each normal can be absorbed into
the normals themselves. The last step in Eq (4) develops
by virtue of this, i.e. we can define a weighted normal i.e.
n̄i ≜ niϕ

barr
i and exploit Thm. 1 to write:

HΦ = (N̄⊤
barrN̄barr − N̄⊤

baseN̄base) (5)

= (ΦbarrN)⊤(ΦbarrN)− (ΦbaseN)⊤(ΦbaseN) (6)

= N⊤Φ⊤
barrΦbarrN−N⊤Φ⊤

baseΦbaseN. (7)

The second equality follows from individually weighting the
normals using Φbarr = diag(ϕbarr),Φbase = diag(ϕbase) ∈
RN×N . Note that this constructive approach also presents a
perspective on the energy induced by our eigenvector prob-
lem. As ∥e∥ = 1 is desired, the solution is given by the eigen-
vector corresponding to the smallest eigenvalue of HΦ.

On a closer look, this approach resembles a graph parti-
tioning where the cost is defined over the surface normals.
We leave further analysis as a future work.

S.2.2 Proof of Theorem 3

Ideally, we would like to predict a minimal set of parameters
for obtaining M̂, which contains N × 2K parameters. An
obvious question arises when we consider the two outputs
obtained through M̂: Ŵ and B̂. In total these two matrices
contain N × (K + 2) unknowns. From this lens, it seems
tempting to predict Ŵ and B̂ instead. We now re-state
Theorem 3 of the main paper arguing that knowing Ŵ and
B̂ is not sufficient to analytically compute M̂:

Theorem 3. Matrix M̂ cannot be uniquely recovered from
Ŵ and B̂.

Proof. We begin by assuming that recovering M̂ ∈ RN×2K

from Ŵ ∈ RN×K and B̂ ∈ RN×2 would be possible.
Hence, we assume the availability of (Ŵ , B̂), while M̂
remains unknown and make use of the constraints at our

disposal. First, we organize the relationship of Ŵ and B̂
to M̂ (as given in the main paper, Sec. 4.1) into matrix
notation:

Ŵ = M̂∆W , B̂ = M̂∆B (8)

where:

∆W = IK×K ⊗
[
1
1

]
, ∆B = 1⊗ I2×2. (9)

IN×N denotes an N × N identity matrix and ⊗, the Kro-
necker product. Below, we show these matrices for the case
of K = 3:

∆K=3
W =


1 0 0
1 0 0
0 1 0
0 1 0
0 0 1
0 0 1

 , ∆K=3
B =


1 0
0 1
1 0
0 1
1 0
0 1

 (10)

From the structure of M, we also have M1 = 1. Note that,
∆W and ∆B are both non-square and hence non-invertible1.
However, it is of interest to see whether these two constraints
would be simultaneously sufficient to recover M̂. To this
end, we convert the observations thusfar into the following
constraints:

∥M̂∆W − Ŵ∥ → min ∥M̂∆B − B̂∥ → min . (11)

To ensure those, we minimize a loss LM:

LM = ∥M̂∆W − Ŵ∥2 + ∥M̂∆B − B̂∥2 + ∥M1− 1′∥2,

by letting ∇MLM = 0. After simple derivations and a
re-arrangement, this yields:

M(∆W∆⊤
W +∆B∆

⊤
B + 11⊤) = Ŵ∆⊤

W + B̂∆⊤
B + 1′1⊤

where 1 and 1′ denote one-vectors of different lengths. Note
that the matrix D ≜ (∆W∆⊤

W +∆B∆
⊤
B + 11⊤) is known

in advance and can be pre-computed. However, its rank will
always be rank(D) = K + 1 and therefore the number of
linearly independent equations is insufficient to solve for M.
This concludes our proof that without further regularity, M̂
cannot be uniquely recovered from Ŵ and B̂.

S.2.3 Robustness under Noisy Point Normals

We include an experiment where the normals of the extrusion
in Fig. 4 (main paper) is perturbed by an increasing amount
of Gaussian noise. As shown on Fig. S1, our fit could tolerate
(error < 10◦) ∼ 10% noise on the normals, which is a
realistic setting.

1Using pseudoinverse does not give us the exact solution in this case.
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Figure S2. Network architecture of our Point2Cyl.

S.3. Additional Details for Our Point2Cyl

We provide additional implementation details for our
Point2Cyl. Fig. S2 shows our overall pipeline. We randomly
sample 8192 points for the point cloud inputs for networks
taken from the underlying mesh for each model. We set
K = 8 as the maximum number of extrusion segments and
trained with a batch size of 4. When the number of extrusion
cylinder segments in the ground truth label is less than K,
the additional segments not matched with any of that in the
ground truth are not included in the loss calculation. S was
trained with normalized 2D point clouds with 2048 points,
with a batch size of 8 with λ1 = 0.1, λ2 = 1. We use initial
learning rate of 0.001 with a decay of 0.7. All models are
trained for around 300 epochs or until convergence using the
Adam optimizer.

We further clarify that our predicted extrusion cylinders
can either be positive/negative volumes, and it can be in-
ferred at post-processing. One can project (oriented) 3D
point normals onto the sketch plane and compare it with the
gradient of the predicted sketch implicit function to deter-
mine additive/subtractive cylinders.

S.4. Implementation Details of Baselines

S.4.1 Hough Voting for Extrusion Cylinders

While Hough voting and its generalized variants are used
in simple primitive detection [1, 9, 10] or general object
detection [2, 4, 11], their readily available adaptation to our
problem remains unexplored. Hence, we create our Hough
baseline by proposing a novel voting strategy for detection
of extrusion cylinders.

In particular, we would like to model the likelihood of an
extrusion axis given all the surface normals in the data. For
an extrusion hypothesis, this reads:

p(e |n1, . . . ,nN ) = p(e)

N∏
i=1

p(ni, e) (12)

=

p(e)
N∏
i=1

p(ni | e)

p(n1, . . . ,nN )
(13)

= α

N∏
i=1

p(ni | e). (14)

The final equality follows from the assumption of a uniform
prior and constant normalizing factor. Taking the logarithm
of both sides, we obtain:

log p(e |n1, . . . ,nN ) = logα+

N∑
i=1

log p(ni | e). (15)

At this stage we propose to model p(ni | e) as a Gibbs mea-
sure:

p(ni | e) =
1

β
exp(−γv(e,ni)). (16)

with β being its normalizing constant. Plugging Eq (16)
into Eq (15) leads to the Hough Transform for e, H(e) ≜



(a)  input object (top), 
Observed points and 
normals (bottom)

(c) modes pre- (top) and
post- (bottom) mean-shift
clustering

(d) vectors corresponding
to modes in pre- (top) and
post- (bottom) mean-shift

(e) final highest voting
extrusion axis shown
in red

(b)  each of the points casts
a vote for all the vectors
in its tangent space.

Figure S3. Steps of our Hough voting baseline for extrusion axis detection. Note that, our Point2Cyl algorithm can outperform this baseline.
Nevertheless, it is still visible that this baseline can also tolerate clutter and confusing structures to a certain extent.

log p(e |n1, . . . ,nN ) :

log p(e |n1, . . . ,nN ) = logα−N log β +

N∑
i=1

v(e,ni)

H(e) = c+

N∑
i=1

v(e,ni) (17)

where c = logα − N log β is a constant. Th is suggest
that the evidence of an extrusion axis e can be obtained by
interpreted as the sum of the votes cast per each normal ni.
Note that, in practice, leaving c out leads to an unnormalized
log probability distribution over the extrusion axis given
surface normals, i.e. MAP (maximum a-posteriori) estimate
trivializes to MLE (maximum likelihood estimation). This
is what a Hough transform essentially computes.

The optionally fuzzy voting function v(e,ni) can be cho-
sen to fit the geometric observation that the extrusion axis
should lie in the tangent plane spanned by the surface nor-
mal, i.e. it has to be normal to the normals. With that, we
can propose binary or non-binary voting functions:

v(e,ni) ≜ δ(|e⊤i ni|) =

{
0, |e⊤i ni| < ϵ

1, o.w.
(18)

At this point, one can obtain a point estimate by:

e⋆ = argmax
e∈S2

H(e). (19)

However, for the cases where multiple modes as well as
noise are present, such approach would not yield a robust
estimate. Therefore, we shift our attention to mode seeking
and use the celebrated mean-shift algorithm [3] to discover
the modes of the underlying distribution. To this end, in
practice, for each point, we maintain a set of random vectors
lying in its tangent space defined by the surface normal. This

defines an empirical/discrete scalar field over the Gaussian
sphere where each particle is a hypothesis for an extrusion
axis. We then find the modes of this empirical distribution.

Different stages of our Hough voting baseline are shown
in Fig. S3.

S.4.2 Direct Prediction (D.P.)

We also provide additional details for D.P., a baseline neural
network that takes in point cloud P and directly predicts the
extrusion parameters without segmentation into generalized
cylinders. Fig. S4 shows the network architecture for D.P..
We use a similar backbone as our network that encodes P
into a latent feature, and then we directly predict K sets of
extrusion parameters (ê, ĉ, ŝ, gDP(Ŝk)) in four separate fully
connected branches, where gDP(Ŝk)) ∈ RD is the latent code
that conditions the sketch decoder S. To train the network,
we project the barrel points for each ground truth segment
Pbarrelk using each of the directly predicted extrusion param-
eters, similar to F(P, k) as introduced in Fit Cyl. in the
Evaluation Metric section of the main paper. We use Hun-
garian matching on F(P, k) to find correspondences with
the ground truth extrusion parameters, and directly supervise
each of the predicted parameters with their corresponding
ground truth. We use the angular error (E.A.) for the extru-
sion axis, the distance/L2 loss for the extrusion center (E.C.),
L1 for the extrusion scale, and Lsketch for gDP.

S.5. Data Pre-Processing Details

We provide additional information on the data pre-
processing used for both Fusion Gallery [12] and Deep-
CAD [13]. We used the Reconstruction subset for Fusion
Gallery [12]. For clarification on the ABC dataset [6], Deep-
CAD dataset [13] is the subset of ABC dataset that col-
lects the models constructed with sketch-extrude operations.
Both datasets include json files that contain the step-by-step
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Figure S4. Network architecture of the direct prediction (D.P.) baseline.

construction sequence and the resulting triangulated output
model, represented as a mesh. We obtain the extrusion cylin-
der segmentation labels for each face of a model by tracking
which construction operation in the json file created each
of mesh faces in the final geometry. For each construction
operation of each model, we also extract the corresponding
extrusion axis from the json file.

We uniformly sample 8192 points over each model’s
surface as our input point cloud along with each point’s
corresponding normal and segmentation label from its mesh
face, as previously described. The point clouds are also
normalized to fit a unit sphere. We classify each point as
base/barrel by checking the dot product between its normal
and the extrusion axis of the extrusion cylinder segment
it belongs to. We obtain the ground truth extrusion center
by taking the mean of all barrel points from each segment.
We also represent the sketch of each segment of the model
with a point cloud by sampling 8192 points along the barrel
faces, and projecting them onto the plane perpendicular to
the corresponding extrusion axis, centering them with the
extrusion center, and finally normalizing to fit a unit circle.

We select a subset of all models that have 1− 8 extrusion
cylinder segments. To balance our dataset, we also use a
portion of the models with a single extrusion such that it
only cover ∼ 20% of our data. To increase the number of
training/test models, we also use the intermediate models in
each construction sequence. Moreover, we discard models
that had tapered extrusions, an extrusion segment with sur-
face area < 2% of the whole model, an extrusion segment
that is too small whose extent is either too short (< 0.015)
or had too few points (< 50). We will release our processed

data upon publication.

S.6. Visualization Post-Processing Details

We also provide additional details on our post-processing
step used for reconstruction refinement and the visualization
of output models.

We first refine the segmentation output of our network
as follows: i) Using the initial predicted segmentation, we
use DBSCAN to cluster the points that belong to the same
segment. If a segment results in more than one cluster, we
unlabel the points belonging to the smaller clusters. ii) An
unlabeled point is labeled with the consensus of its neighbors.
iii) A point is relabeled if its neighbors have a high consensus
with a different label, and the neighborhood consensus is
used as the new label of the point.

We further use robust methods to estimate for scale and
extent. To estimate for scale, we use RANSAC to randomly
sample 1% of the barrel points for each extrusion segment,
which are then used to estimate for the scale, as described
in our main paper. The scale estimate of the segment is
accepted if it explains more than 80% of all its barrel points.
For extrusion extent, we use DBSCAN to cluster all the
barrel points projected along the extrusion axis, and we
calculate the extent based on the most dominant cluster.

Finally, we further optimize the sketch fitting by di-
rectly optimizing our sketch implicit network (modified from
IGR [5] as described in the main paper), to directly fit the
projected barrel points based on our network’s output for
each individual segment.



S.7. Additional Evaluations

S.7.1 Comparison with Conditional Generation Exten-
sion to DeepCAD [13]

We also analyze and compare our approach with a condi-
tion generation extension of DeepCAD [13] that is cast as
a future work in their paper. DeepCAD [13] introduced a
transformer-based generative model for CAD modeling se-
quences, similar to their proposed approach in their "Future
Applications" section. We use the experimental code pro-
vided by the DeepCAD authors to encode point clouds using
PointNet++ and map the resulting embeddings to the latent
vector of their CAD sequence encoder from their original
generative model. The PointNet++ encoder was trained for
100 epochs with batch size of 128 on the same DeepCAD
training subset as Point2Cyl. We use the Adam optimizer
with initial learning rate of 10−4 and decay the learning rate
by 0.1 every 30 epochs.

At inference time, we use the Pointnet++ encoder to get
the latent embedding of the point cloud and the CAD se-
quence decoder to obtain the reconstruction. We use the
same DeepCAD test subset as for Point2Cyl. We used the
released implementation for DeepCAD sequence reconstruc-
tion and found that the modeller fails to reconstruct 11.5%
of the testing models from the output of the conditional
DeepCAD generation. We report the fitting loss (Eq. 15
of the main paper) for DeepCAD (0.0959) vs. our model
(0.0758) on the subset of models that [13] was able to suc-
cessfully reconstruct. We take the midpoint of the tokenized
outputs from [13] as the primitive parameters to obtain the
corresponding extrusion cylinders that are used for loss com-
putation. Fig. S6 shows some qualitative comparisons with
reconstruction outputs from our Point2Cyl. These are exam-
ples where the DeepCAD reconstruction pipeline is able to
output a solid. Results show that the outputs of DeepCAD
does not always match the shape of the input geometry, and
moreover, some examples show that DeepCAD often strug-
gles to produce valid solid models in the output. In order to
create a valid solid model, it is a requirement that the sketch
profiles do not self-intersect. When self-intersecting profiles
are extruded, the resulting solids will not define a closed and
watertight volume. They will also fail the consistency checks
of the solid modeling kernel and in some cases may fail to
triangulate. Our Point2Cyl uses 2D implicits to define a
sketch profile, and hence they will not intersect compared to
DeepCAD, which can produce in self-intersecting geometry.
Also, our Point2Cyl is trained to minimize the fitting error,
while the encoding-decoding architecture of DeepCAD is
not trained to make the output fit the input point cloud, and
thus resulting in completely different shapes in some cases.

b) Example from real scansa) Failure cases: i) pred seg, ii) gt seg, iii) recons

Figure S5. a) Failure cases. b) Real scan results.

S.7.2 Ablation on Noisy Data

We further experiment on adding noise to the input point
clouds at both training and test time. We randomly perturb
the points along the normal direction with a uniform noise
between [−σ, σ]. Results are shown in Tab. S1, and we see
that our Point2Cyl is able to tolerate noisy inputs without
large performance drops. Experiments are on the Fusion
Gallery dataset.

S.7.3 Ablation on Additional Loss Functions

We further ablate on adding additional loss functions. We
experiment on adding additional loss functions that directly
supervises for the extrusion axis (E.A.) and extrusion center
(E.C.) based on the estimates from our parameter estimation
module. Results are shown in Tab. S2. We see that adding
these additional losses during training does not improve our
performance. Experiments are on the Fusion Gallery dataset.

S.7.4 Failure Cases and examples on Real Scans

Fig. S5-a shows some examples of failure cases. Our ap-
proach is challenged by thinly separated extrusion cylinders
(1st) and thin extrusion cylinders with few barrel points (2nd)
resulting in poor reconstruction. Fig. S5-b shows examples
of reconstructions from real scans of [8].
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