
A. FPN based models: Disentangling Capacity
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Figure 6. Performance of different detectors preserving the same
set of weights (ResNet-101). As the backbones are frozen, it is
possible to disentangle the relative benefit from pre-training on
ImageNet versus JFT-300M from other confounding factors. Pre-
training on a larger image classification dataset (JFT-300M) has a
clear (and similar) benefit across detectors with different compo-
sitions (FPN, NAS-FPN, NAS-FPN + Cascade). Training longer
benefits all variations.

Model Pretraining mAP AP @ 50

FPN
+ResNet-50 ImageNet 46.2 68.5

+ Freeze backbone (−6.5) 39.7 (−6.2) 62.3
JFT-300M 46.4 68.2

+ Freeze backbone (−6.0) 40.4 (−4.1) 64.1
+ResNet-101 ImageNet 47.6 69.0

+ Freeze backbone (−6.7) 40.9 (−5.0) 64.0
JFT-300M 48.1 69.8

+ Freeze backbone (−6.1) 42.0 (−3.6) 66.2

FPN + Cascade
+ResNet-50 ImageNet 48.5 66.1

+ Freeze backbone (−6.1) 42.4 (−6.3) 59.8
JFT-300M 49.4 67.3

+ Freeze backbone (−6.1) 43.3 (−6.1) 61.4
+ResNet-101 ImageNet 49.7 67.8

+ Freeze backbone (−5.5) 44.2 (−5.8) 62.0
JFT-300M 50.3 68.6

+ Freeze backbone (−5.1) 45.2 (−4.6) 64.0

Table 8. Impact of freezing backbone on FPN based models.
Training for shorter (72 epochs) results. Models adopting FPN
do not benefit from feature preservation. The addition of Cas-
cade heads do not change the observed results. The performance
decrease is similar for models using ResNet-50 and ResNet-101
frozen backbones.

The experiments contained in this appendix further in-
vestigate the role of capacity in detectors adopting FPNs.

As presented in the main text, knowledge preservation
improves the performance of models with strong detector
components (NAS-FPN and NAS-FPN + Cascade) using
both ResNet (subsection 4.2) and EfficientNet-B7 (subsec-
tion 4.3) backbones. Longer training schemes are able to
change the backbone weights further away from a good ini-

Pretraining conv. layers mAP mAP @ 50

From scratch 1 48.9 70.7
2 (−0.5) 48.4 (−0.6) 70.1

– Fine-tune backbone
ImageNet 1 48.4 69.7

2 (+0.2) 48.6 (+0.8) 70.5
JFT-300M 1 48.6 70.1

2 (+0.1) 48.7 (+0.4) 70.5

– With frozen backbone
ImageNet 1 41.3 64.4

2 (+0.8) 42.1 (+0.9) 65.3
JFT-300M 1 42.2 66.4

2 (+0.9) 43.1 (+0.8) 67.2

Table 9. Impact on FPN based models performance from decreas-
ing their RPN capacity by reducing its convolutional layers from
two (baseline value) to one layer. Results taken using a Resnet-
101 backbone (training for longer). Training from scratch perfor-
mance is increased with the capacity reduction while the opposite
happens for models with pre-trained initialization. Models with
frozen backbone have the largest decrease in performance from
reducing RPN’s capacity.

Pretraining conv. layers mAP mAP @ 50

From scratch 2 45.6 67.0
4 (+0.3) 45.9 (+0.5) 67.5

– Fine-tune backbone
ImageNet 2 47.5 69.0

4 (+0.3) 47.8 (+0.7) 69.7
JFT-300M 2 48.1 69.8

4 (−0.2) 47.9 (< 0.1) 69.8

– With frozen backbone
ImageNet 2 40.9 64.0

4 (+1.0) 41.9 (+1.2) 65.2
JFT-300M 2 42.0 66.2

4 (+0.9) 42.9 (+0.5) 66.7

Table 10. Impact on FPN based models performance from aug-
menting RPN capacity by doubling its convolutional layers (from
two to four layers). Results taken using a Resnet-101 backbone
(training for 72 epochs). The gap between frozen and trained mod-
els remains large after increasing RPN’s capacity.

tial representation, but the relative increase in performance
from pre-training on a large dataset is clarified by compar-
ing their frozen counterparts. As shown in Figure 6, the
the relative benefit from preserving the knowledge from
larger classification datasets is similar across different de-
tectors. This is shown in the visualization as the lines com-
paring models pre-trained on ImageNet are close to parallel
to those of models pre-trained on JFT-300M. Individual per-
formances can be found in Table 1, Table 8 and Table 12.

On the other hand, the absolute performances of models
using FPN show that those with frozen backbone lag be-
hind their corresponding fine-tuned or trained from scratch
(for longer) counterparts (Table 8). They also show that the



Pretraining #filters mAP AP @ 50

– Full model fine-tuning
ImageNet 256 47.6 69.0

512 (+0.1)47.7 (+0.1)69.1
JFT-300M 256 48.1 69.8

512 (< 0.1) 48.1 (< 0.1) 69.8

– With frozen backbone
ImageNet 256 40.9 64.0

512 (+2.0) 42.9 (+1.9) 65.9
JFT-300M 256 42.0 66.2

512 (+1.4) 43.4 (+1.0) 67.2

Table 11. Impact on FPN based models performance from in-
creasing detector components hidden representation form 256 up
to 512. Results taken using a ResNet-101 backbone (training for
72 epochs). Fine-tuned models show close to no improvement in
performance. Models with frozen backbone benefit from extra ca-
pacity with a relative improvement. Their absolute performance,
on the other hand, shows that extra capacity on filters alone is not
enough to fully benefit from knowledge preservation.

addition of Cascade heads alone does not reduce the gap
between the fine-tuned or frozen counterparts.

The experiments in this appendix aim to disentangle the
role of capacity from other confounding factors, in the gap
observed on FPN results. With that goal in mind, we ablate
extra experiments that preserve the overall architecture of
the FPN based detector, but change the number of trainable
parameters available.

First, we evaluate the impact of a small change in ca-
pacity, by decreasing the number of convolutional layers
available on the RPN. As Table 9 shows, this reduction
in capacity impacts the performance of models with pre-
trained backbones and those trained from scratch differ-
ently. While pre-trained ones have their performance re-
duced, the trained from scratch version benefits from it.
The results also show that frozen models are more harmed
by the decrease in capacity than the fine-tuned ones. Ta-
ble 10 presents the results of the opposite experiment, of
increasing RPN’s capacity by doubling the number of con-
volutional filters in this component. The increase in perfor-
mance observed in frozen models is still small compared to
the performance of fully trained counterparts.

Next, we evaluate a larger change in number of parame-
ters, by increasing the number of filters in the detector com-
ponents from 256 to 512. More specifically we increase the
hidden representation size on the RPN, Decoder and De-
tection head (see Figure 2). As Table 11 shows, increas-
ing capacity of the hidden representations does not impact
fine-tuned models significantly, while improved the frozen
counterpart.

While the experiments explored in this section reduce the
gap between the tuned and frozen FPN models, they also
show that changes in capacity alone do not fully explain the

Model Pretraining mAP AP @ 50

NAS-FPN
+ResNet-50 ImageNet 47.0 68.0

+ Freeze backbone (+0.1) 47.1 (+0.3) 68.3
JFT-300M 47.5 68.9

+ Freeze backbone (+0.4) 47.9 (+0.7) 69.6
ResNet-101 ImageNet 48.2 69.6

+ Freeze backbone (−0.4) 47.8 (−0.3) 69.3
JFT-300M 48.5 69.2

+ Freeze backbone (+0.5) 49.0 (+1.3) 70.5

NAS-FPN + Cascade
+ResNet-50 ImageNet 49.4 66.8

+ Freeze backbone (+0.5) 49.9 (+0.3) 67.1
JFT-300M 49.9 67.6

+ Freeze backbone (+1.1) 51.0 (+1.2) 68.8
+ResNet-101 ImageNet 51.1 68.7

+ Freeze backbone (−0.3) 50.8 (−0.3) 68.4
JFT-300M 50.9 68.5

+ Freeze backbone (+1.3) 52.2 (+1.5) 70.0

Table 12. Impact on performance from frozen representation as-
sociated with the use of NAS-FPN under shorter schedule regime
(72 epochs). Freezing from ImageNet takes longer to converge
as the increase in accuracy observed on NAS-FPN and NAS-FPN
+Cascade models is smaller than the observed in longer training
regimes. Models composed with NAS-FPN and frozen backbone
produce matching or superior performance while consuming fewer
resources during training.

performance increase observed on stronger detectors. Next,
we review the performance of NAS-FPN based models.

B. NAS-FPN based models
This section presents additional results with a shorter

training schedule than the 600 epochs schedule used in the
main text. We aim to address the impact of training time
on our results and review [47]’s observations in light of
more recent tricks and practices for training object detec-
tors. In this appendix specifically, we extend their observa-
tions to models using NAS-FPN backbones, not covered by
the original work. Adding to that, by the time [47] was pub-
lished, object detection batch size was considerably smaller
than the 256 size used in recent literature [14]. In [47],
MSCOCO training scheme adopted a batch size of 9 images
and a maximum of 3M steps. The only data augmentation
used by them is random flipping, while recent findings show
the importance of large scale jittering (LSJ) [50] on detec-
tor training. Thus, Tables 12 and 8 observe the impact of
training for 72 epochs with larger batch size (64) and the
use of stronger data augmentation (LSJ). We also note that
NAS-FPN was proposed after [47], thus, our results extend
their observations to the use of more recent components. In
summary, by replicating the comparison using more recent
findings, we confirm that [47]’s findings about FPN based
models on shorter training scheme are still valid. At the
same time, our results show that the benefit from the re-
use of the knowledge from large scale image classification
datasets is dependent on the choice of the feature pyramid



Model Pretraining mAP AP @ 50

NAS-FPN + ResNet-101 ImageNet 44.0 63.0
+ Freeze backbone (+0.0) 44.0 (+0.2) 63.2

JFT-300M 44.8 63.7
+ Freeze backbone (+0.8) 45.6 (+1.5) 65.3

FPN + ResNet-101 ImageNet 42.6 62.2
+ Freeze backbone (−7.3) 35.3 (−6.0) 56.2

JFT-300M 43.7 63.0
+ Freeze backbone (−8.4) 35.3 (−4.8) 58.2

Table 13. One-stage detector performance (RetinaNet, 72
epochs). Similarly to the two-stage detectors, models with frozen
features based on NAS-FPN obtain similar performance e signifi-
cantly reducing resources used during training.

Model Pretraining mAP AP @ 50

NAS-FPN + ResNet-101 From scratch 42.6 61.7
ImageNet 44.3 63.3

+ Freeze backbone (+1.5) 45.8 (+1.9) 65.2
JFT-300M 44.0 62.8

+ Freeze backbone (+2.4) 46.4 (+3.5) 66.3

FPN + ResNet-101 From scratch 43.5 63.2
ImageNet 43.8 63.6

+ Freeze backbone (−7.6) 36.2 (−6.2) 57.4
JFT-300M 44.3 63.7

+ Freeze backbone (−8.3) 36.0 (−4.6) 59.1

Table 14. One-stage detector performance (RetinaNet) under
longer training (600 epochs) shows similar trends to the two-
stage detectors results: models with Nas-FPN benefit from feature
preservation. Training for longer improved the results and relative
gain of feature preservation for models based on NAS-FPN but did
not help closing the performance gap on those based on FPN.

network architecture more than any of the other detector
components.

C. NAS-FPN Single Stage Detectors
This appendix complements the observations of the main

text taken using two-stage detectors with ablations adopting
single stage detectors, more specifically RetinaNet [29]. Ta-
ble Table 13 presents the results obtained by training Reti-
naNet detectors using a ResNet-101 backbones composed
with FPN and NAS-FPN backbones trained for 72 epochs.
Table Table 14 presents the ablations using similar models
but trained for 600 epochs. Similarly to the observations
taken using two-stage detectors, single stage models using
NAS-FPN also benefit from feature preservation.

D. LVIS: with no data augmentation
This section presents results on the LVIS dataset with-

out the use of Copy-Paste [12] augmentation. Results from
Table 15 show that preserving the features obtained on
large classification datasets improves performance of ob-
jects with different numbers of annotations, while results
from Table 16 show that the benefit is also observed across
objects of different sizes. The tables show positive impact

for both detection and segmentation tasks.

E. Feature preservation and adaptation
In this appendix we extend the results presented in

subsection 4.5 to further explore the use of Residual
Adapters [40, 41] as a mechanism to balance preserving
knowledge obtained from the larger dataset and maintaining
some amount of adaptability in the backbone while learning
on the target task. We present the performance delta with re-
spect to full backbone fine-tuning (δFt) and backbone freez-
ing (δFz) to better highlight the impact of residual adapters
on results presented in Table 1.

We ablate the use of Residual Adapters across detectors
using different compositions (FPN, NAS-FPN, NAS-FPN
+Cascade) and a fixed backbone (ResNet-101). As shown
in Table 17, the use of residual adapters increased the per-
formance of frozen models in all compositions (positive
δFz). Detectors adopting FPN presented the largest gain
from the use of residual adapters, but their absolute perfor-
mance still lags behind their fine-tuned counterpart (nega-
tive δFt).

The largest absolute performance is obtained with NAS-
FPN-based detectors (with gains over both the fine-tuned
and frozen baselines), at the cost of increased computational
resource requirements.

Next, Table 18 presents our results on the effect of vary-
ing the backbone while fixing the detector components
on the stronger detector composition explored (NAS-FPN
+Cascade). Using this detector composition, the gain ob-
tained by the use of adapters is positive no matter if using
the smaller (ResNet-50) or larger (ResNet-101) backbone.



LVIS Box Mask

mAP mAPr mAPc mAPf mAP mAPr mAPc mAPf

First stage results: regular training
[12]’s baseline 35.0 12.7 34.0 45.9 32.2 13.4 32.2 40.4

+ Freeze backbone (+0.9) 35.9 (+0.1) 12.8 (+1.3) 35.3 (+0.9) 46.8 (+1.3) 33.5 (+0.0) 13.4 (+2.0) 34.2 (+1.1) 41.5

Second stage: tunes detection-classifier final layer using class-balanced loss
[12]’s baseline 37.6 23.2 36.0 45.7 34.9 24.6 34.2 40.3

+ Freeze backbone (+1.8) 39.4 (+1.2) 24.4 (+2.7) 38.7 (+1.1) 46.8 (+2.3) 37.2 (+2.0) 26.6 (+3.3) 37.5 (+1.3) 41.6

Table 15. Performance using EfficientNet-B7 + NAS-FPN per number of annotations groups. Freezing the backbone matches or surpasses
fine-tuning performance in all cases (both detection and segmentation) . Balanced loss improves frozen backbone performance more than
the fine-tuned one. As opposed to fine-tuning [12], preserving features induces an increase in performance on rare (mAPr) and common
(mAPc) classes, while still improving frequent (mAPf ) classes. Original first phase results are provided by the authors of [12]. Results
with Copy-Paste augmentations can be found in Table 5.

LVIS Box Mask

mAP mAPs mAPm mAPl mAP mAPs mAPm mAPl

First stage results: regular training
[12]’s baseline 35.0 28.5 43.8 50.3 32.2 24.4 42.2 49.0

+ Freeze backbone (+0.9) 35.9 (+0.2) 28.7 (+2.4) 46.2 (+2.4) 52.7 (+1.3) 33.5 (+0.4) 24.8 (+2.3) 44.5 (+2.8) 51.8

Second stage: tunes detection-classifier final layer using class-balanced loss
[12]’s baseline 37.6 30.8 46.9 53.4 34.9 26.4 45.3 52.2

+ Freeze backbone (+1.8) 39.4 (+0.6) 31.4 (+2.9) 49.8 (+4.0) 57.4 (+2.3) 37.2 (+0.6) 27.0 (+3.3) 48.6 (+4.5) 56.7

Table 16. Performance using EfficientNet-B7 + NAS-FPN per object size groups. Freezing the backbone surpasses fine-tuning perfor-
mance for object of all sizes (both detection and segmentation). It has the strongest positive performance impact on large objects (mAPl),
then medium-sized objects (mAPm), and finally small objects (mAPs). Balanced loss improves frozen backbone performance more than
the fine-tuned one. Original first phase results are provided by the authors of [12]. Comparison results with Copy-Paste augmentations can
be found in Table 6.

Model Pretraining Epochs mAP δFt δFz mAP50 δFt δFz

FPN + fbb + ra ImageNet 72 43.9 (−3.7) (+3.0) 66.8 (−2.2) (+2.8)
600 45.0 (−3.6) (+2.9) 67.8 (−2.6) (+2.5)

JFT 72 46.0 (−2.2) (+3.9) 69.2 (−0.6) (+3.0)
600 46.7 (−2.0) (+3.6) 69.9 (−0.6) (+2.7)

NAS-FPN + fbb + ra ImageNet 72 48.6 (+0.4) (+0.8) 70.0 (+0.4) (+0.7)
600 49.9 (+0.9) (+0.8) 71.4 (+1.4) (+1.1)

JFT 72 49.8 (+1.3) (+0.8) 71.5 (+2.3) (+1.0)
600 51.1 (+1.9) (+1.0) 73.1 (+2.9) (+1.3)

NAS-FPN, Cascade + fbb + ra ImageNet 72 51.8 (+0.7) (+1.0) 69.7 (+1.0) (+1.3)
600 53.0 (+1.9) (+1.2) 71.2 (+2.0) (+1.2)

JFT 72 53.0 (+2.1) (+0.8) 71.2 (+2.7) (+1.2)
600 53.6 (+2.5) (+0.9) 72.0 (+3.0) (+1.0)

Table 17. Residual adapters across detectors with increasing capacity and fixed backbone (training for shorter): Adapting feature backbones
while preserving original knowledge by freezing the original ResNet weights. Columns show mAP and mAP@50 and their difference to
their corresponding model trained with fine-tuned features (δFt) and frozen features (δFz). All models using Resnet-101. fbb: backbone
frozen on classification features, ra: residual adapters.



Model Pretraining Epochs mAP δFt δFz mAP50 δFt δFz

ResNet-50 ImageNet 72 50.5 (+1.1) (+0.7) 68.3 (+1.5) (+1.2)
600 51.4 (+1.1) (+0.3) 69.4 (+1.4) (+0.3)

JFT 72 51.7 (+1.8) (+0.7) 69.8 (+2.2) (+1.1)
600 52.8 (+2.4) (+0.7) 71.2 (+3.1) (+0.8)

ResNet-101 ImageNet 72 51.8 (+0.7) (+1.0) 69.7 (+1.0) (+1.3)
600 53.0 (+1.9) (+1.2) 71.2 (+2.0) (+1.2)

JFT 72 53.0 (+2.1) (+0.8) 71.2 (+2.7) (+1.2)
600 53.6 (+2.5) (+0.9) 72.0 (+3.0) (+1.0)

Table 18. Residual adapters over backbones in two sizes and same detector structure (training for longer): Adapting feature backbones
while preserving original knowledge by freezing the original ResNet weights. Table shows results on Fast-RCNN combined with NAS-
FPN and Cascade heads. Columns show mAP and mAP@50 and their difference to the corresponding model with fine-tuned features (δFt)
and frozen features (δFz). fbb: backbone frozen on classification features, ra: residual adapters.
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