
Generalized Category Discovery

Appendices

Centroid Initialization Cluster Assignment Centroid UpdateInitial Data

Unlabelled Data Points Labelled Data Points Cluster Centroids k-Means++ initialization

Figure 4. Semi-supervised k-means algorithm shown for k = 5. Given partially labelled data points (Initial Data), we first initialize

|YL| = 3 centroids by the average of labelled data points in each labelled class (shown as colored dots). Starting from these centroids,

we run k-means++ (dashed arrows) on the unlabelled data (black dots) to further obtain |YU \ YL| = 2 centroids (Centroid Initialization).

Having obtained k = 5 centroids (colored stars), we assign each data point a cluster label by identifying its nearest centroid (Cluster

Assignment), after which we can update the centroids by averaging all data points in each cluster (Centroid Update). We repeat the cycle

of Cluster Assignment and Centroid Update iteratively, until the k-means algorithm converges. During each cycle, we force the labelled

data points to follow their ground-truth label, i.e. all labelled points of the same class fall into the same cluster.

A. Dataset details

Here, we describe which classes constitute the ‘Old’ and
‘New’ categories in the Generalized Category Discovery
setting, for each dataset used in this paper.

For all datasets, we sample 50% of the classes as ‘Old’
classes (YL) and keep the rest as ‘New’ (YU \ YL). The ex-
ception is CIFAR100, for which we use 80 classes as ‘Old’,
following the novel category discovery literature. For the
generic object recognition datasets, we use the first |YL|
classes (according to their class index) as ‘Old’ and use the
rest as ‘New’. For datasets in the Semantic Shift Benchmark
suite, we use the data splits provided in [45]. For Herbar-
ium19, to account for the long-tailed nature of the dataset,
we randomly sample the ‘Old’ classes from the total list of
classes. Further details on the splits can be found in Tab. 1 in
the main paper and in the open-source code for this project.

B. Semi-supervised k-means

We elaborate on the semi-supervised k-means algorithm
for GCD (from Sec. 3.1.2 of the main paper) in Fig. 4.

C. Estimating the number of classes

In Fig. 5, we provide motivation for our algorithm in
Sec. 3.2 of the main paper, which is used to estimate the
number of classes in the dataset (k = |YL ∪ YU |). 1

Specifically, we plot how the clustering accuracy on the
labelled subset (DL) changes as we run k-means with vary-
ing k on the entire dataset (DL∪DU), for a range of datasets.

1Note that |YL ∪ YU | = |YU | as |YL ⊂ YU |. We use the former
notation for clarity.

It can be seen that the ACC on the labelled subset follows
an approximately bell-shaped function for all datasets. Fur-
thermore, the function is maximized when k-means cluster-
ing is run with roughly the ground truth number of classes
for each dataset, indicating that optimizing for this maxi-
mum is a reasonable way of identifying the total number of
categories.

Figure 5. Plot showing how the clustering accuracy on the la-

belled subset (DL) changes as we run k-means, with varying

k, on the entire dataset (DL ∪ DU). The ground-truth number

of classes in CIFAR10, CIFAR100, ImageNet-100 and CUB are

[10, 100, 100, 200] respectively.

D. Results on FGVC-Aircraft

We run the baselines and our method on the third fine-
grained dataset (FGVC-Aircraft [31]) from the Semantic

Shift Benchmark suite [45], reporting results in Tab. 6.

Table 6. Results on the FGVC-Aircraft [31] splits from the Se-

mantic Shift Benchmark suite [45].

FGVC-Aircraft

Classes All Old New

k-means [30] 16.0 14.4 16.8
RankStats+ 26.9 36.4 22.2
UNO+ 40.3 56.4 32.2

Ours 45.0 41.1 46.9

E. On Hungarian assignment and clustering
accuracy

Here, we highlight a perhaps un-intuitive interaction be-
tween how the Hungarian assignment is performed and the
reported ACC for all methods.

Background The purpose of the Hungarian algorithm
[28] is to find the optimal matching between cluster indices
predicted by the model and the ground truth labels. For in-
stance, consider a toy case with two categories {1, 2}, with
an ‘Old’ class YL ={1} and a ‘New’ class YU \ YL ={2}.
We further imagine the dataset to have 4 instances with
ground truth labels {1, 1, 2, 2} and a model which assigns
them to clusters as {2, 2, 1, 1}. Note that ‘a cluster’ here
could be either a cluster as referred to in the traditional sense
(e.g as in our method, a cluster of points in feature space),
or simply a group of instances which are predicted the same
class label by a linear classifier (as with the baselines). The
Hungarian algorithm ensures a reported ACC of 100% in
this case (as the instances have been correctly clustered to-
gether) by solving the linear assignment between ground
truth labels and cluster indices as (1 → 2, 2 → 1).

Our evaluation protocol As stated in Sec. 4.1, we com-
pute the Hungarian algorithm once, across all instances in
the DU . This gives us model predictions which are in the
‘frame of reference’ of the ground truth labels for all in-
stances. Then, given these model predictions, we use the
ground truth labels to select instances from the ‘Old’ and
‘New’ classes before computing the percentage of correct
predictions (ACC) within these subsets.

Legacy NCD evaluation protocol In public implemen-
tations, we find that the novel category discovery litera-
ture [13, 18] computes ACC on these subsets differently.
Specifically, the NCD literature first uses the ground truth
labels to select which instances belong to the ‘Old’ and
‘New’ categories, before computing the Hungarian assign-
ment on each subset independently. Importantly, this allows
the same discovered cluster to be used twice. We suggest
that this provides an overly optimistic view of model per-
formance on the data subsets and does not quite reflect the
true image recognition setting.

Illustration The left-hand diagram in Fig. 6 shows two
discovered clusters (‘Cluster 1’ and ‘Cluster 2’) as well as
the ground truth labels of their constituent instances (solid
blue and yellow circles). The blue circles indicate images
from an ‘Old’ class (e.g ‘Dog’) and the yellow circles indi-
cate images from a ‘New’ one (e.g ‘Cat’). The radii of the
circles illustrate the number of instances.

On the right, we demonstrate the ‘Legacy NCD’ evalu-
ation protocol for the ‘Old’ and ‘New’ data subsets, where
the Hungarian assignment is computed twice, and indepen-
dently on each data subset. For instance, the evaluation first
looks at only ‘Old’ instances (blue circles) and the assign-
ment algorithm allocates the old category to Cluster 1. The
ACC is then computed as the number of ‘Old’ instances in
Cluster 1 over the total number of ‘Old’ instances. How-
ever, subsequently, the evaluation looks only at the ‘New’
instances (yellow circles) and once again uses Cluster 1, as-
signing it to the new category. As such, Cluster 1 is used
twice, allowing the evaluation to report high ACC on both
data subsets.

In contrast, the Hungarian assignment can be computed
over all instances, forcing the assignment of Cluster 2 to
a ground truth category. In this way, the performance on
one of the data subsets is necessarily lower. This is how we
compute ACC on ‘Old’ and ‘New’ categories in this work,
and show it as ‘Ours’ in the figure.

Finally, we show how ACC is computed over ‘All’ cat-
egories in the unlabelled set. This protocol is followed both
in this work and in the novel category discovery literature.

F. Attention maps

Here, we expand upon the attention visualizations from
Fig. 3. We first describe the process for constructing them,
before providing further examples in Fig. 7.

Visualization construction The attention visualizations
were constructed by considering how different attention
heads, supporting the output [CLS] token, attended to dif-
ferent spatial locations. Specifically, consider the input to
the final block of the ViT model, X ∈ (HW+1)×D, cor-
responding to a feature for each of the HW patches fed to
the model, plus a feature corresponding to the [CLS] to-
ken. Here, HW = 14 × 14 = 196 patches at resolution
16 × 16 pixels. These features are passed to a multi-head
self-attention (MHSA) layer which can be described as:

MHSA(X) = [head1, . . . , headh]W0, (5)

where

headj = Attention(XW
Q
j ,XW

K
j ,XW

V
j). (6)

In other words, the layer comprises several attention
heads (h = 12 in the ViT model) which each independently
attend over the input features to the block. We refer to [44]

90 ‘Old’

‘New’

‘All’

Ours Legacy NCD

10≈

≈

50≈

Clustering of old and new classes

Cluster 1

Cluster 2

Dog

90

Cat

80

Dog

10

Cat

10

Evaluation protocol

90≈

90≈

Figure 6. An illustration of how the Hungarian algorithm affects the final clustering ACC. The left-hand image shows two discovered

clusters (‘Cluster 1’ and ‘Cluster 2’) and the ground truth labels of their constituent instances (solid colored circles). On the right, we show

how ACC is computed if the Hungarian assignment is computed only once (‘Ours’) as well as how ACC is computed if the Hungarian

assignment is computed independently for ‘Old’ and ‘New’ classes (‘Legacy NCD’).

for more details on the self-attention mechanism. We note
that, for each feature i ∈ X, an attention vector is generated
for each head j, as Aij ∈ [0, 1]HW+1 to describe how every
head j relates each feature to every other feature.

We look at only the attention values for the [CLS] to-
ken, A0j , and further only look at the elements which attend
to spatial locations. We find that, while some heads have
uninterpretable attention maps, certain heads specialize to
attend to coherent semantic object parts.

Discussion on attention visualizations We provide fur-
ther attention visualizations in Fig. 7. We show the same

attention heads as shown in Fig. 3 (both for models trained
with our method and for the original DINO model).

We first note that the DINO features often attend to
salient object regions. For instance, ‘Head 1’ of the model
often focuses on the wheel of the car (in the Stanford Cars
examples), while ‘Head 2’ of the model generally attends to
the heads of the birds (in the CUB examples). Overall, how-
ever, with the pre-trained DINO model, there is relatively
little semantic consistency between the attention maps of a
given head (i.e. within columns for each dataset).

In contrast, we find that the models trained with our ap-
proach specialize attention heads in semantically meaning-
ful ways. The heads shown correspond to ‘Windshield’,
‘Headlight’ and ‘Wheelhouse’ for the Stanford Cars model,
and ‘Beak’, ‘Head’ and ‘Belly’ for the CUB model. We find
these maps to be relatively robust to nuisance factors such
as pose and scale shift, as well as distracting objects in the
image. We note a failure case (rightmost image, Row 2), as
the ‘Wheelhouse’ attention head is forced to attend to mis-
cellaneous regions of the car, as the car’s wheelhouse is not
visible in this image.

The ability of the model to identify and distinguish dif-
ferent semantic parts of an object is useful for the GCD task.
Particularly in the fine-grained setting, the constituent set of
parts of an object (‘Head’, ‘Beak’, ‘Belly’ etc. for the birds)
transfer between ‘Old’ and ‘New’ classes. Thus, we sug-
gest that the attention mechanism of the model allows it to
generalize its understanding from the labelled ‘Old’ classes,
and apply it to the unlabelled ‘New’ ones.

G. Broader impact and limitations

Our method assigns labels to images in an unsupervised
manner, including discovering new labels. Even more than
standard image classification methods, it should be used
with care (e.g., by manually checking the results) in sen-
sitive contexts, such as processing personal data.

We also note some practical limitations. First, we as-
sume that there is no domain shift between the labelled and
unlabelled subsets. For instance, we are not tackling the
problem of a single model reliably classifying photographs
and paintings of the same classes. Second, we do not con-
sider the streaming setting (also known as continual learn-
ing): one would need to re-train the model from scratch as
new data becomes available.

As for the data used in the experiments, we use standard
third-party datasets in a manner compatible with their li-
censes. Some of these datasets contain Internet images that
feature, often incidentally, people — see [2, 35, 47] for an
in-depth discussion of the privacy implications.

St
an

fo
rd

 C
ar

s
DINO-ViT before fine-tuning ViT after fine-tuning w\ ours

Head1 Head2 Head3 Head1 Head2 Head3

C
U

B

Figure 7. Attention visualizations. Attention maps for the DINO model before (left) and after (right) fine-tuning with our approach on the

Stanford Cars (top) and CUB (bottom) datasets. For each dataset, we show two rows of images from the ‘Old’ classes (solid green box)

and two rows of images from the ‘New’ classes (dashed red box). Our model learns to specialize attention heads (shown as columns) to

different semantically meaningful object parts, which can transfer between the ‘Old’ and ‘New’ categories.

