
Sparse Non-local CRF: Supplementary Materials

Olga Veksler
University of Waterloo, Canada

oveksler@uwaterloo.ca

Yuri Boykov
University of Waterloo, Canada

yboykov@uwaterloo.ca

Abstract

In the supplementary materials we discuss the advan-
tages of using more than one quantization and give more
implementation details and results for the applications. We
also give and discuss failure examples.

1. One quantization vs. Two quantizatoins

Figure 1. Illustrates the advantage of two quantizations over a
single quantization. Segmentation is with seeds: red for the object,
blue for the background.

Fig. 1(a) shows an image for segmentation with seeds,
the red pixels are hard-constrained to the object, the blue
to the background. If we use only local edges, we get seg-
mentation in Fig. 1(b). There is no setting of wpq for local
edges that results in a better segmentation, as segmenting a
textured patch around the seed is cheaper than segmenting
the whole object. If we use a single quantization and only
non-local edges, the result is in Fig. 1(c). Only the pix-
els that fall into the same bin as some object seed pixel are
segmented as the object. Adding local edges worsens the
result, as the local edges pull the isolated pixels in (c) to be
labeled as the background. With two quantizations (second
quantization is shifted relative to the first) we get almost the
whole object segmented, Fig. 1(d). This is because pixels
in the red square connect to pixels in color bins other than
their own, and these, in turn, connect to other similar pixels.

2. Application: GrabCut

Here we give more details for the GrabCut application
from Sec. 4.1 of the main paper.

2.1. Empty Solution Avoidance

We now give details of our empty solution avoidance
technique. In principle, every image has its own optimal
setting of the parameters that balance the unary and pair-
wise terms in Eq. (12) in the main paper. However, we
have to chose parameters that generalize well for most im-
ages. Sometimes a parameter setting that generalizes well
for most images works particularly badly for an individual
image. For example, if too much weight is given to the
pairwise terms, the result is an empty solution with every-
thing assigned to the background. Some methods [1] de-
velop heuristic solutions1 to this problem.

We develop a principled approach that guarantees an
empty solution is avoided, although the object can still be
of small size. Our approach relies on the fact that we find a
global optimum of our energy in Eq. (3) and can efficiently
compute the energy of any labeling. Thus our approach
cannot be applied straightforwardly for energies with dense
CRF. Also note that our approach is applied after non-local
random edges are selected, and they stay fixed for a given
image during all the iterations of GrabCut algorithm. This
is important (no change in edges) to guarantee an empty so-
lution is avoided.

Let x0 be an empty labeling, i.e. x0
p = 0 for all p. Let x̂

be a reasonable non-empty solution. We want to ensure that
the parameter setting is s.t. our energy in Eq. (3) is lower for
a reasonable non-empty labeling than for an empty one, i.e.
E(x̂) < E(x0). If this holds, we proceed to optimization.
If E(x̂) > E(x0), we add a “balooning” term to our energy

Eb(x) =
∑
p∈P

(1− xp). (1)

with weight λb, where λb is just sufficiently large to have

E(x̂) + λbE
b(x̂) < E(x0) + λbE

b(x0), (2)

This ensures that a reasonable solution x̂ is preferred to the
empty solution. Observe that Eb(x0) > E(x̂), since Eb

1This heuristic is not discussed in the main paper but is implemented in
their publically available code.

achieves its maximum at x0, and x̂ is not empty by assump-
tion. Therefore a sufficiently large setting of λb is

λb =
E(x̂)− E(x0)

Eb(x0)− Eb(x̂)
+ ϵ, (3)

where ϵ is a small number.
To find a reasonable non-empty x̂, we sort pixels inside

the box by their preference for the foreground, and hard-
constrain the top r fraction of them to the foreground. In
practice, we set r = 1/6. Then we perform optimization
of Eq. (3) in the main paper, and the resulting solution is x̂.

The choice of λb in Eq. (3) guarantees an empty solution
is avoided, but it may result in too much ballooning, i.e.
the whole box can be assigned to the object. We avoid this
as follows. Let x1 be the labeling where all box pixels are
assigned to the object, i.e. the labeling we wish to avoid.
We want to ensure

E(x̂) + λbE
b(x̂) < E(x1) + λbE

b(x1), (4)

Observe that Eb(x1) = 0. Therefore, to ensure λb is not
too large, we need

λb <
E(x1)− E(x̂)

Eb(x̂)
, (5)

If the value of λb we compute according to Eq. (3) also hap-
pens to satisfy Eq. (5), then we proceed with λb. Otherwise
we set λb according to Eq. (5). This is because while Eq. (3)
ensures there is no empty solution collapse, it does not give
us the smallest λb that avoids empty solution. And, if, in
fact, Eq. (5) is not satisfied, a solution that is too large, i.e.
the whole box is segmented as an object is preferred to the
reasonable solution x̂. To avoid this, λb needs to be reduced
according to Eq. (5).

We now evaluate how well our sparse non-local CRF per-
forms without our empty solution avoidance technique, to
ensure that most of the progress is due to our model, and
not due to avoiding empty solutions. In Tab. 1, we aug-
ment Tab. 3 from the main paper with three more lines: our
results with no ballooning in case of Gaussian and distance
weights, as well as sparse GrabCut2 (our implementation of
GrabCut) without ballooning. The results of GrabCut2 and
our sparse non-local CRF with Gaussian weights worsen
just a little, whereas our method with distance weights
worsens significantly, especially for ECSSD dataset. This
means that distance edge weights are more susceptible to
the empty solution problem, and also that our mechanism to
avoid empty solution is effective. The last column of Tab. 1
gives the running time, in seconds, per image for our mat-
lab implementation for the methods that we implement our-
selves.

GrabCut MSRA1K ECSSD run time (sec)

sparse GrabCut1 .909 .945 NA -
sparse GrabCut2 .897 .956 .868 1.2
dense GrabCut1 .932 .959 .829 -
dense GrabCut2 .872 .950 .837 1.4

ours (gauss) .919 .966 .892 2.1
ours (dist) .928 .961 .880 1.2

sparse GrabCut2, no ballooning .894 .956 .863 1.0
ours (gauss), no ballooning .923 .959 .870 1.1

Table 1. Evaluation of our model for the GrabCut algorithm with-
out the empty solution avoidance technique (no ballooning). The
performance metric Fβ score, higher is better.

2.2. Parameter Setting

Like in previous work, we tune parameters on GrabCut
dataset and then apply them to the other datasets with no
change. All images are scaled to 256 × 256. All methods
are run for 10 iterations or until convergence, if it happens
sooner. For the distance weights, the number of bins in
color quantization is 32, number of quantizations is 2, we
use 8 non-local edges per pixel (four from each quantiza-
tion), in Eq. (8) in the main paper, σcol = 15 and λl = 100,
and in Eq. (10) in the main paper, σcol = 1, λnl = 250.
Such a small setting of σcol = 1 means that only very sim-
ilar pixels in non-local edges have significant weight. The
large setting of λnl means that the non-local edges to these
similar pixels are assigned a lot of weight. Distance be-
tween pixels connected by a non-local edge matters much
less than with Gaussian weights. Which means that similar
pixels in the image are connected by an edge with signifi-
cant weight even if they are far apart.

For Gaussian weights, we use 2 quantizations, 64 bins
in color quantization, the number of non-local edges per
pixel is 2 (one from each quantization), in Eq. (8) in the
main paper, σcol = 15 and λl = 100, and in Eq. (9) in
the main paper, σcol = 40, σpos = 5, λnl = 30. Here
σcol for non-local edges is much higher than with distance
weights. This means that most pixels that fall into the same
color bin have equally strong weight components in terms
of color. However, the distance component now is Gaussian
kernel with width 5 (all images are normalized with coor-
dinate range from 0 to 100), so distant pixels in the same
color bin have much weaker weights compared to the dis-
tance weights above.

2.3. Failure Examples

Some illustrative failure examples are in Fig. 2. We show
the input image (bounding box is omitted), the ground truth,
the results with sparse CRF (our implementation), results
from dense Cut [1], our own implementation of GrabCut
with dense CRF, and our results with Gaussian and distance
weights. In the first row both for Gaussian and distance
weights, the darker zebra stripes are similar to some por-

tions of the background and they are missed by our meth-
ods, but not by sparse CRF, as it has a strong prior for
shorter object boundaries. In the second row, the toy has
similar pants to the background, so our methods fail to
segment it, unlike sparse CRF. However the toy arms are
segmented by our method unlike the segmentation result
of sparse CRF. In the third row, the result with Gaussian
weights is highly accurate, but the result of distance weights
joins most of the sign to the background due to strong color
similarity. With Gaussian weights, there are much fewer
strong connections between the sign and the background,
so the sign gets fully segmented. In the last row, our result
with Gaussian weights adds a shadow from the bike to the
bike itself, due to the tendency of our model to join nearby
fine spurious detail.

3. Application: OneCut
We now give more details and results for OneCut [5] ap-

plication from Sec. 4.2 of the main paper. The advantage
of OneCut over GrabCut is that the energy function in One-
Cut can be optimized exactly and there is no need to iterate.
The setting is, again, segmenting an object given its bound-
ing box.

An input image is color quantized with fixed bin width
in each color channel. Let sj(x) be the number of pixels in
bin j that have label 1, and define

Ecs(x) =
∑

j∈{1,...,m}

min{sj(x), nj − sj(x)}. (6)

Ecs is called a color separation term since it encourages pix-
els in the same color bin to be assigned to the same label.
Also let El be the standard sparse CRF with local connec-
tions

El(x) =
∑

(p,q)∈Nl

e
−∥Cp−Cq∥2

2σ2
col · [xp ̸= xq], (7)

and Eb(x) be the ballooning term in Eq. (1). OneCut opti-
mizes the following energy

E(x) = El(x) + βEcs(x) + Eb(x), (8)

where Cp is the color of pixel p.
We show in Sec. 3.4 of the main paper that our sparse

non-local CRF can be used to optimize the energy in Eq. (8)
but with a different color separation term. In particular, if
we set wpq = 1 for all non-local pairwise interactions in
Eq. (4), then our color separation term is modelled through
the expected non-local energy as

Ēnl(x) = 2 ·
∑

j∈{1,...,m}

sj(x)(nj − sj(x))

nj
, (9)

where nj is the number of pixels in bin j.
For our approximation of OneCut (which, more properly

called, is a version of OneCut with a differnt consistency
term), we replace Ecs in Eq. (6) by our non-local connec-
tions with wpq = 1.

Unlike [5], who are restricted by their construction to
the color separation term based only on cardinality, i.e. the
number of pixels separated in color bin j, in our approach,
we can implement color separation terms that have cost that
depends on the color of pixels split across the bin, thus en-
couraging any splits to happen across less similar colors.

We experiment with color consistency term with Gaus-
sian weights on the pixel colors

EcsG(x) =
∑

(p,q)∈Nnl

e
−∥Cp−Cq∥2

2σ2
cs · [xp ̸= xq], (10)

Thus our generalized OneCut energy is as in Eq. (8) but
with Ecs(x) replaced by Eq. (10).

As before, let x1 be a labeling that is 1 inside the bound-
ing box and 0 outside the bounding box, and x0 be a label-
ing that is 0 everywhere. In [5], for each individual image,
they set

β = β′ E
b(x0)

Ecs(x1)
, (11)

and search for a suitable β′ setting on the GrabCut dataset
experimentally. If one ignores El and if β′ < 1, such choice
of β leads to ensuring that E(x1) < E(x0). We choose the
same approach, except we replace Ecs in Eq. (11) by EcsG.

We implement our approximation to OneCut and gen-
eralized OneCut. We use 8 random neighbors per pixel,
as with OneCut we found larger non-local neighborhoods
work better, see Tab. 1 in the main paper. We used 256×256
images for this evaluation. For OneCut (our implementa-
tion), we used σcol = 15, λl = 50 for the local edges,
and β′ = 0.9. For our approximation to OneCut, we used
σcol = 6, λl = 135 for the local edges, and β′ = 0.9. For
our generalized OneCut, we used σcol = 15, λl = 50 for
the local edges, σcol = 2 for the non-local edges in Eq. (10),
and β′ = 0.9.

The results of the original OneCut [5] (our re-
implementation of it), our approximation of OneCut, and
our generalization of OneCut and are in Tab. 2 for sev-
eral bin sizes. Our generalization works better for GrabCut
dataset, and on other datasets, the performance is compara-
ble for 64 bins, and much better as the number of bins de-
creases. OneCut (and ours OneCut approximate) are much
more sensitive to the number of bins per channel compared
to our generalized OneCut. This is because as the number of
bins decreases, any particular bin is likely to contain pixels
from different objects, but the cost of breaking it depends
only on the partition size under OneCut (and its approxi-
mation). However, pixels that do belong to one object tend

Figure 2. Failure examples for the GrabCut application, from left to right: input image; ground truth; GrabCut with sparse CRF our
implementation; results from dense Cut [1]; our own implementation of GrabCut with dense CRF; our sparse non-local CRF with distance
edge weights; our sparse non-local CRF with Gaussian edge weights.

OneCut Ours (approximate OneCut) Ours (generalized OneCut)

bins per channel 8 16 32 64 8 16 32 64 8 16 32 64

GrabCut .797 .847 .867 .897 .799 .850 .871 .899 .875 .892 .903 .908
MSRA1K .942 .945 .948 .948 .949 .951 .951 .949 .942 .946 .949 .949
ECSSD .685 .753 .797 .818 .694 .762 .804 .824 .810 .810 .810 .813

running time (sec) 0.96 0.50 0.60 1.22 0.94 0.86 0.80 0.72 0.5 0.6 0.80 0.78

Table 2. Evaluation of OneCut [5], our approximation of it, and our generalizaiton of it for several different bin sizes. The performance
metric Fβ score, higher is better.

to have more similar colors. For our generalized OneCut,
as the cost of splitting the bin does depend on pixel colors,
it works better for separating bins according to the object
membership. The running times are in the last row of Tab. 2.

A qualitative evaluation on images from GrabCut dataset
are in Fig. 3 for the case of 64 bins per channel. On some
images, the performance is almost identical, on some, our
generalized OneCut preserves the details better.

OneCut does not work as well as GrabCut, especially for
ECSSD dataset. Examining the results, it is mostly due to
many images completely labelled as the background. The
parameter setting of the ballooning term in Eq. (11) is not
always successful.

4. Application: Salient Object Segmentation

We now give more details and results for salient object
segmentation application from Sec. 4.3 of the main paper.
In Sec. 4.1 we describe the regularized loss approach to
weakly supervised salient object segmentation developed
in [7]. In Sec. 4.2 we describe our changes to [7] and give
more experimental results.

4.1. Sparse Local CRF for Weak Supervision

In [7] they develop a method for image tag weakly su-
pervised single class semantic segmentation, i.e. the dataset
contains a single object class of interest. Image tag weak su-
pervision means that there is no pixel precise ground truth,
but only the knowledge that the class of interest is present in
the image. This approach is naturally applicable to salient
object segmentation. The main tool in [7] is regularized
loss, based on sparse CRF.

We now describe the approach in [7]. There are two
classes: the object (class 1) and background (class 0). Let x
be the output of CNN, where x has the same size as the in-
put image. The output of CNN for pixel p is denoted by xp.
The last layer of CNN is softmax, so that xp ∈ (0, 1). The
most important component of the regularized loss is sparse
CRF

Lcrf (x) =
1

|P|
∑

(p,q)∈N

e−
||Cp−Cq||2

2σ2 · |xp − xq|, (12)

where P is the set of all pixels in the image, N is the set of
neighboring pixel pairs, Cp is the color of p. If CNN pro-
duces a sharp distribution, i.e. most xp are close either to

Figure 3. Qualitative comparison of OneCut, our approximation of it, and our generalization of it on some images from GrabCut dataset.
Bounding boxes in the input image are ommitted.

0 or to 1, then if two nearby pixels are not assigned to the
same class, a loss related to image edge strength between
pixels p and q is incurred. The lowest value of sparse-CRF
is zero, incurred for a trivial solution: everything is classi-
fied as the object (or background). Thus one cannot train
with sparse CRF alone.

The second component of regularized loss is volumet-
ric loss. It penalizes empty (or full) solutions. Let x̄ =
1

|P|
∑

p∈P xp, i.e. the normalized object size. There are
two volumetric losses: batch and minimum volume. The
batch volumetric loss Lb is defined for a batch of m images
with outputs x1, . . . ,xm:

Lb(x1, . . . ,xm) = (
1

m

∑
i

x̄i − 0.5)2.

This loss encourages the average size of objects in a batch
to be half of the image size.

The second volumetric loss is the minimum volume loss
Lm. It acts on a single image output x and penalizes the
result if the normalized object size is less than objmin

Lm(x) =
[
x̄ < objmin

]
·
(
x̄− objmin

)2
, (13)

where
[
·
]

is 1 if the argument is true and 0 otherwise. Fol-
lowing [7], we set objmin = 0.15.

For a dataset with one object class, the border pixels are
likely to be background, and the center pixel is likely to be

object. These priors are incorporated in positional loss. Let
B be the set of pixels on the image border of width w = 3.
Let C be the pixels in the central square of the image of size
c = 3. The positional loss Lp(x) is

Lp(x) =
(1

|B|
∑
p∈B

xp

)2
+
(1

|C|
∑
p∈C

xp − 1
)2
. (14)

The complete regularized loss for training is a weighted
sum of components

Lreg(x) = λcrfLcrf (x)+λbLb(x)+λmLm(x)+λpLp(x).
(15)

In [7] they devise a two-stage strategy for training CNN
with loss in Eq. (15): first annealing and then the normal
stage. They also find that the annealing stage can be re-
placed by weight transfer. First, CNN is trained on Oxford-
Pet [6] dataset, in both stages. Then, for any new dataset,
the weights from CNN trained on OxfordPet are transferred,
and training starts in the normal stage with λcrf = 100,
λm = 5, λb = λp = 1, σ = 0.15.

4.2. Sparse Non-local CRF for Weak Supervision

In our application, we replace the sparse CRF loss
in Eq. (15) by our sparse non-local CRF.2. We evaluate both

2Note that in [7], they tested dense CRF for their regularized loss, but
found that it is difficult to train with it, perhaps due to the difficulty of

32 bins per channel 64 bins per channel

number of edges 2 4 8 2 4 8

r = 10/11 .900 .899 .898 .894 .900 .900
r = 2/3 .987 .901 .906 .901 .900 .900
r = 1/2 .900 .900 .900 .906 .902 .901

Table 3. Ablation for different choices of bins per channel, number
of edges, and r when training and evaluating on MSRAB dataset.
The performance metric Fβ score, higher is better.

32 bins per channel 64 bins per channel

σpos 5 10 20 5 10 20

r = 10/11 .900 .891 .892 .901 .893 .890
r = 2/3 .901 .886 .893 .902 .893 .893
r = 1/2 .902 .890 .897 .900 .897 .889

Table 4. Ablation of different choices for the number of bins per
channel, σpos, and r when training and evaluating on MSRAB
dataset. The performance metric Fβ score, higher is better.

the distance and Gaussian weights from Sec. 4.1 of the main
paper. We use CNN architecture from [7]3, Unet [4] with
ResNeXt [9] fixed features pretrained on Imagenet [2] and
train 256 × 256 images. Like in [7], we start with weights
pretrained on OxfordPet dataset. We train for 100 epochs.

We largely use the same parameter setting as in Sec. 2 for
both distance and Gaussian weights, with two exceptions.
First difference is that we use the same value of σcol = 0.15
as in [7] for the color Gaussian component of all local and
non-local wpq terms, namely in Eqs. (8) to (10) in the main
paper. The color channels are normalized for input to CNN,
so 0.15 is roughly equivalent to 15 used with unnormalized
color channels for the application in Sec. 2. The second
difference concerns λl and λnl weights in Eqs. (8) and (10)
of the main paper. We ensure that our total CRF weight is
the same as the total CRF weight in [7], thus λcrf = 100
in Eq. (15). Then we distribute a fraction r of it among the
non-local edges, and a fraction 1−r among the local edges.
We chose r = 2/3, which gives non-local portions of CRF
twice more weight than the local edges. We also evaluate
other choices for r in Tabs. 3 and 4.

The other weights are set as before. For the distance
weights, the number of bins in color quantization is 32,
number of quantizations is 2, we use 8 non-local edges per
pixels (four from each quantization). For Gaussian weights,
we use 2 quantizations, 64 bins in color quantization, the
number of non-local edges per pixel is 2 (one from each

minimizing the loss function of their type. Using dense CRF in a loss
function is different from using dense CRF as part of architecture. Since
there is no pixel precise ground truth, having dense CRF in architecture
does not help in designing a loss function useful for training in weakly
supervised setting.

3https://github.com/morduspordus/SingleClassRL

quantization), and in Eq. (9) in the main paper, σpos = 5.
We use datasets DUTS [8] and MSRAB [3] for training,

and our results and quantitative comparisons are reported
in the main paper. Here we perform ablation studies on
MSRAB dataset for different choices of number of bins,
number of neighbors, and rate r of distribution of λCRF

between the local and non-local weights. For distance and
Gaussian weights, the results are reported in Tabs. 3 and 4,
in terms of Fβ score on the test fold of MSRAB dataset.
The results are quite stable in terms of varying these param-
eters compared to the classical applications. This is proba-
bly because CNNs learn much more discriminitive features,
compared to the simple color models used in classical ap-
plications.

We also compare CNN trained with weak supervision
and CNN with the same architecture but trained with full
ground truth in Tabs. 5 and 6 for MSRA and DUTS datasets,
respectively. On MSRAB dataset, there is almost no gap be-
tween our classifiers and the classifier trained with ground
truth, which implies that any further performance improve-
ment would need a more more powerful CNN architecture.
On DUTS dataset, there is a small but significant gap, which
means it is still possible to improve performance by de-
signing a better loss function, rather than switching to a
different architecture. Interestingly, classifier trained with
ground truth does not always has the best performance on
other datasets.

We give more qualitative examples in Fig. 4, for quan-
titative comparisons to these methods see the main paper.
In this figure we also compare to [10, 11], who use scrib-
bles, much stronger forms of supervision, to sparse CRF [7],
and to the same CNN architecture as ours, but trained on
ground truth. Our methods preserve details much better
than [7, 10, 11]. For some images, for example the bicy-
cle in the forth row, some of the extracted details are more
accurate than the ground truth annotations. Sometimes our
method adds fine spurious details, like the shadow of the bi-
cycle in row 4 or bowling alley lane edges in row 8. Some
failure examples are in Fig. 5. Our method can have prob-
lems extracting very thin objects with washed out intensity
edges, and can join brightly colored structures to the salient
object. For other methods we compare to, these images are
also challenging.

References
[1] Ming-Ming Cheng, Victor Adrian Prisacariu, Shuai Zheng,

Philip HS Torr, and Carsten Rother. Densecut: Densely
connected crfs for realtime grabcut. In Computer Graphics
Forum, volume 34, pages 193–201. Wiley Online Library,
2015. 1, 2, 4

[2] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei.
ImageNet: A Large-Scale Hierarchical Image Database. In
CVPR09, 2009. 6

MSRAB ECSSD DUTO PascalS THUR SOD

ground truth training .909 .907 .753 .828 .728 .849

ours (gauss) .902 .898 .767 .842 .729 .812
ours (dist) .907 .902 .771 .841 .734 .810

Table 5. MSRAB training dataset: Comparison to classifier with the same architecture that we use, but trained with full ground truth.
Performance metrics are Fβ (higher is better).

MSRAB ECSSD DUTO PascalS THUR SOD DUTS

ground truth training .873 .918 .789 .874 .738 .870 .867

ours (gauss) .875 .905 .781 .859 .731 .845 .827
ours (dist) .878 .909 .790 .862 .745 8̇40 .839

Table 6. DUTS training dataset: Comparison to classifier with the same architecture that we use, but trained with full ground truth.
Performance metrics are Fβ (higher is better).

[3] Tie Liu, Jian Sun, Nan-Ning Zheng, Xiaoou Tang, and
Heung-Yeung Shum. Learning to detect a salient object.
In Conference on Computer Vision and Pattern Recognition,
pages 1–8. IEEE, 2007. 6

[4] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net:
Convolutional networks for biomedical image segmentation.
In Medical Image Computing and Computer-Assisted Inter-
vention, pages 234–241, 2015. 6

[5] Meng Tang, Lena Gorelick, Olga Veksler, and Yuri Boykov.
Grabcut in one cut. In ICCV, 2013. 3, 4

[6] Andrea Vedaldi. Cats and dogs. In Conference on Computer
Vision and Pattern Recognition, 2012. 5

[7] Olga Veksler. Regularized loss for weakly supervised single
class semantic segmentation. In European Conference on
Computer Vision, pages 348–365. Springer, 2020. 4, 5, 6, 8

[8] Lijun Wang, Huchuan Lu, Yifan Wang, Mengyang Feng,
Dong Wang, Baocai Yin, and Xiang Ruan. Learning to de-
tect salient objects with image-level supervision. In CVPR,
2017. 6

[9] Saining Xie, Ross B. Girshick, Piotr Dollár, Zhuowen Tu,
and Kaiming He. Aggregated residual transformations for
deep neural networks. In Conference on Computer Vision
and Pattern Recognition, pages 5987–5995, 2017. 6

[10] Siyue Yu, Bingfeng Zhang, Jimin Xiao, and Eng Gee Lim.
Structure-consistent weakly supervised salient object detec-
tion with local saliency coherence. In Thirty-Fifth AAAI
Conference on Artificial Intelligence, AAAI 2021, Thirty-
Third Conference on Innovative Applications of Artificial In-
telligence, IAAI 2021, The Eleventh Symposium on Educa-
tional Advances in Artificial Intelligence, EAAI 2021, Virtual
Event, February 2-9, 2021, pages 3234–3242. AAAI Press,
2021. 6, 8

[11] Jing Zhang, Xin Yu, Aixuan Li, Peipei Song, Bowen Liu,
and Yuchao Dai. Weakly-supervised salient object detection
via scribble annotations. In Conference on Computer Vision
and Pattern Recognition, pages 12546–12555, 2020. 6, 8

Figure 4. Qualitative comparison. From left to right: input image, ground truth, method trained with scribbles [11], method trained with
scribbles [10], sparse CRF [7], our result with distance weight, our results with Gaussian weights, the same CNN architecture as we use,
but trained with full ground truth.

Figure 5. Some failure examples on the same methods as in Fig. 4.

	. One quantization vs. Two quantizatoins
	. Application: GrabCut
	. Empty Solution Avoidance
	. Parameter Setting
	. Failure Examples

	. Application: OneCut
	. Application: Salient Object Segmentation
	. Sparse Local CRF for Weak Supervision
	. Sparse Non-local CRF for Weak Supervision

