
Ref-NeRF: Structured View-Dependent Appearance for Neural Radiance Fields
Supplemental Material

Dor Verbin1,2 Peter Hedman2 Ben Mildenhall2

Todd Zickler1 Jonathan T. Barron2 Pratul P. Srinivasan2

1Harvard University 2Google Research

A. Integrated Directional Encoding Proofs
We begin by proving the expression for the expected

value of a spherical harmonic under a vMF distribution in
Equation 7 in our main paper.

Claim 1. The expected value of a spherical harmonic func-
tion Y m

ℓ (ω̂) under a vMF distribution with mean ω̂r and
concentration parameter κ is:

Eω̂∼vMF(ω̂r,κ)[Y
m
ℓ (ω̂)] = Aℓ(κ)Y

m
ℓ (ω̂r), (S1)

where:

Aℓ(κ) =
κ

2 sinhκ

∫ 1

−1

Pℓ(u)e
κudu, (S2)

with Pℓ the ℓth Legendre polynomial.

Proof. We begin by first aligning the mean direction of the
distribution ω̂r with the z-axis. We do this by applying a
rotation matrix R to transform ω̂′ = Rω̂ where we choose
R that satisfies Rω̂r = ẑ. Since the Jacobian of this trans-
formation has unit determinant, we can write:

Eω̂∼vMF(ω̂r,κ)[Y
m
ℓ (ω̂)] = c(κ)

∫
S2

Y m
ℓ (ω̂)eκω̂

⊤
r ω̂dω̂

(S3)

= c(κ)

∫
S2

Y m
ℓ (R−1ω̂)eκ cos θdω̂,

where c(κ) = κ
4π sinhκ is the normalization factor of the

vMF distribution, and θ is the angle between ω̂r and the
z-axis.

A rotated spherical harmonic can be written as a linear
combination of all spherical harmonics of the same degree,
with coefficients specified by the Wigner D-matrix of the
rotation:

Y m
ℓ (R−1ω̂) =

ℓ∑
m′=−ℓ

D
(ℓ)
mm′(ω̂r)Y

m′

ℓ (ω̂). (S4)

Plugging this into the expression from Equation S3:

Eω̂∼vMF(ω̂r,κ)[Y
m
ℓ (ω̂)] (S5)

= c(κ)

ℓ∑
m′=−ℓ

D
(ℓ)
mm′(ω̂r)

∫
S2

Y m′

ℓ (ω̂)eκ cos θdω̂.

The azimuthal dependence of the integrand is periodic in
2π for any m′ ̸= 0, so the only integral that does not vanish
is the one with m′ = 0, yielding:

Eω̂∼vMF(ω̂r,κ)[Y
m
ℓ (ω̂)] (S6)

= c(κ)D
(ℓ)
m0(ω̂r)

∫
S2

Y 0
ℓ (ω̂)eκ cos θdω̂.

Plugging the known expression for the ℓth degree 0th

order spherical harmonic Y 0
ℓ (ω̂) =

√
2ℓ+1
4π Pℓ(cos θ)

and the corresponding elements of the Wigner D-matrix

D
(ℓ)
m0(ω̂r) =

√
4π

2ℓ+1Y
m
ℓ (ω̂r), and integrating over the az-

imuthal angle, we get:

Eω̂∼vMF(ω̂r,κ)[Y
m
ℓ (ω̂)] (S7)

= 2πc(κ)Y m
ℓ (ω̂r)

∫ π

0

Pℓ(cos θ)e
κ cos θ sin θdθ

= 2πc(κ)Y m
ℓ (ω̂r)

∫ 1

−1

Pℓ(u)e
κudu

=
κ

2 sinhκ
Y m
ℓ (ω̂r)

∫ 1

−1

Pℓ(u)e
κudu

= Aℓ(κ)Y
m
ℓ (ω̂r),

where the second equality was obtained using the change of
variables u = cos θ.

Next, we show that the integral has a closed-form solu-
tion, leading to a simple expression for the ℓth attenuation
function, Aℓ(κ).

1



Claim 2. For any ℓ ∈ N the attenuation function Aℓ satis-
fies:

Aℓ(κ) = κ−ℓ
ℓ∑

i=0

(2ℓ− i)!

i!(ℓ− i)!
(−2)

i−ℓ
bi(κ), (S8)

where bi(κ) = κi for even values of i and bi(κ) =
κi coth(κ) for odd i.

Proof. We prove this by first finding a recurrence relation
for the attenuation functions, and then proving our expres-
sion by induction.

From Equation S2, the (ℓ−1)th attenuation function can
be written as:

Aℓ−1(κ) =
κ

2 sinhκ

∫ 1

−1

Pℓ−1(u)e
κudu (S9)

=
κ

2 sinhκ

∫ 1

−1

(
d

du

Pℓ(u)− Pℓ−2(u)

2ℓ− 1

)
eκudu

=
κ

2 sinhκ

(
Pℓ(u)− Pℓ−2(u)

2ℓ− 1

)
eκu

∣∣∣1
−1

− κ2

2 sinhκ

∫ 1

−1

(
Pℓ(u)− Pℓ−2(u)

2ℓ− 1

)
eκudu

= − κ

2ℓ− 1
(Aℓ(κ)−Aℓ−2(κ)) .

where the second equality was obtained using a known re-
currence relation of the Legendre polynomials, the third was
obtained using integration by parts, and the fourth by using
the fact that Pℓ(±1)− Pℓ−2(±1) = 0. Reordering, we get:

Aℓ(κ) = Aℓ−2(κ)−
2ℓ− 1

κ
Aℓ−1(κ). (S10)

We can easily find the first two attenuation functions by
directly computing the integrals:

A0(κ) =
κ

2 sinhκ

∫ 1

−1

eκudu = 1, (S11)

A1(κ) =
κ

2 sinhκ

∫ 1

−1

ueκudu = coth(κ)− 1

κ
.

Finally, we prove our claim by induction using the recur-
rence relation in Equation S10. It is easy to verify that our
expression holds for ℓ = 0 and ℓ = 1 by plugging these
values in Equation S8 and comparing with Equation S11.

We now assume that the relation holds for any ℓ− 2 and
ℓ− 1 and prove it for ℓ ≥ 2. We can do this by considering
the coefficient of κ−m for every m ∈ {0, ..., ℓ} of the right
hand side of Equation S10, and show that it is identical to
the one from Equation S8. We begin by separately consid-
ering m = 0, m = ℓ− 1 and m = ℓ, and then any other m.
Note that for some m values κ−m is multiplied by coth(κ),

but this factor always matches in Aℓ−2(κ), in 1
κAℓ−1(κ),

and in Aℓ(κ), so we neglect it.
For m = 0, the only contribution to the coefficient of κ0

is from Aℓ−2, which gives a coefficient of 1, matching with
the κ0 coefficient of Aℓ.

For m = ℓ−1 we only get a contribution from the second
term, and the coefficient is:

−(2ℓ− 1)
(2ℓ− 3)!

1!(ℓ− 2)!
(−2)2−ℓ (S12)

=
(2ℓ− 1)(ℓ− 1)(2ℓ− 3)!

1!(ℓ− 1)(ℓ− 2)!
· 2 · (−2)1−ℓ

=
(2ℓ− 1)(2ℓ− 2)(2ℓ− 3)!

1!(ℓ− 1)(ℓ− 2)!
(−2)1−ℓ

=
(2ℓ− 1)!

1!(ℓ− 1)!
(−2)1−ℓ,

which matches with that of Aℓ from Equation S8.
Similarly, for m = ℓ the contribution is also from the

second term, with the coefficient:

−(2ℓ− 1)
(2ℓ− 2)!

0!(ℓ− 1)!(−2)1−ℓ
(S13)

= 2
(2ℓ− 1)!

0!(ℓ− 1)!
(−2)ℓ

= 2
2ℓ(2ℓ− 1)!

0! · 2ℓ · (ℓ− 1)!
(−2)ℓ

=
(2ℓ)!

0!ℓ!
(−2)−ℓ,

and again this matches with the coefficient of Aℓ.
Finally, for any m ∈ {1, ..., ℓ − 2}, we have that the

coefficient of κ−m on the right hand side of Equation S10
is:

(ℓ+m− 2)!

(ℓ−m− 2)!m!
(−2)−m (S14)

− (2ℓ− 1)
(ℓ+m− 2)!

(ℓ−m)!(m− 1)!
(−2)1−m

=
(−2)−m(ℓ+m− 2)!

(ℓ−m)!m!

· [(ℓ−m)(ℓ−m− 1) + 2m(2ℓ− 1)]

=
(−2)−m(ℓ+m− 2)!

(ℓ−m)!m!
(ℓ+m)(ℓ+m− 1)

=
(ℓ+m)!

(ℓ−m)!m!
(−2)−m,

which is identical to the coefficient in Equation S8, finishing
our proof.

Computing the attenuation function using Equation S8 is
inefficient, and it is numerically unstable due to catastrophic



0 10 20 30 40 50
0.0

0.2

0.4

0.6

0.8

1.0

A
(

)

= 0
= 1
= 2
= 3
= 4
= 5
= 6
= 7

Figure S1. The first eight attenuation functions Aℓ(κ). The exact
expression (in solid lines) matches the approximation (in dashed
lines), with an increasing accuracy as ℓ increases.

cancellation. In Equation 8 of the main paper we present an
approximation which is guaranteed to be close to the ex-
act functions from Equation S8, for large values of κ. We
finish this section with a proof of this claim. Additionally,
Figure S1 shows that our approximation closely resembles
the exact attenuation functions for all values of κ > 0 and
all orders ℓ, and that its quality improves as ℓ increases.

Claim 3. For large values of κ, our approximation is exact
up to an O(1/κ2) term, i.e.:

Aℓ(κ) = exp

(
−ℓ(ℓ+ 1)

2κ

)
+O

(
1

κ2

)
(S15)

Proof. Using the fact that coth(κ) = 1 + O(e−2κ), and
using the i = ℓ and i = ℓ− 1 terms from the sum in Equa-
tion S8 of Claim 2, we have that:

Aℓ(κ) = 1− ℓ(ℓ+ 1)

2κ
+O

(
1

κ2

)
. (S16)

Using a 1st order Taylor approximation for the exponen-
tial function yields:

exp

(
−ℓ(ℓ+ 1)

2κ

)
= 1− ℓ(ℓ+ 1)

2κ
+O

(
1

κ2

)
, (S17)

proving our claim.

B. Interpretations of Normal Vector Penalty
As described in the main paper, the regularization term in

Equation 11 penalizes “backwards-facing” normal vectors
that contribute to the ray’s final rendered color.

Note that Equation 11 applies this penalty to the nor-
mals output by the spatial MLP as opposed to the normal
vectors directly computed from the gradient of the density
field. While this penalty is remarkably effective at improv-
ing recovered normal vectors, we find that directly apply-
ing it to the gradient density normals sometimes affects the
optimization dynamics for fine geometric structures. Even

when NeRF recovers a concentrated surface at the end of
optimization, it typically passes through a fuzzier volumet-
ric representation during optimization, and directly penal-
izing the gradient of the volume density can sometimes ad-
versely affect this trajectory. Our approach of applying the
orientation penalty to the predicted normals gives the spa-
tial MLP two options at every location: it can either predict
normals that agree with the density gradient ones, in which
case our orientation loss is effectively applied to the density
field; or it can predict normals that deviate from those com-
puted from the density field, and incur a normal prediction
penalty Rp. We find that applying the penalty to predicted
normals allows our method to adaptively apply the orienta-
tion loss, resulting in accurate normals without loss of fine
details (see ablation studies).

Besides providing smooth normals for computing reflec-
tion directions and providing a mechanism for an adaptive
corner-preserving orientation loss, the predicted normals
also allow the model to directly encode view directions by
predicting a constant normal direction n̂′(x) = ĉ, leading to
a 1-to-1 mapping from view direction to reflection direction
(see Equation 4). While this is discouraged by the normal
prediction loss Rp, our model can exploit this behavior in
regions that are not well-described by a surface at a scale
whose geometry the density field can capture.

C. Optimization and Additional Model Details
Optimization Our implementation is based on the official
JAX [2] implementation of mip-NeRF [1].

In all of our experiments on synthetic data we apply the
normal orientation loss from Equation 11 and the normal
prediction loss from Equation 10 of the main paper with
weights of 0.1 and 3 ·10−4 respectively, relative to the stan-
dard NeRF data loss from Equation 2. In our experiments
on real captured data, we apply a slightly higher weight
of 10−3 on the normal prediction loss. We use the same
weights during both the coarse and fine stages.

During training, we add i.i.d. Gaussian noise with stan-
dard deviation 0.1 to the bottleneck b. We find that this
slightly stabilizes our model’s results in some cases by pre-
venting it from using the bottleneck early in training.

We optimize all experiments on the Blender scenes using
single-image batching to be consistent with results reported
in the NeRF and mip-NeRF papers. For our Shiny Blender
dataset, we sample random batches of rays from all images.

We train our model, ablations of our model, and all
mip-NeRF baselines using a slightly modified version of
mip-NeRF’s learning schedule: 250k optimization itera-
tions with a batch size of 214, using the Adam [3] optimizer
with hyperparameters β1 = 0.9, β2 = 0.999, ε = 10−6,
a learning rate that is annealed log-linearly from 2 × 10−3

to 2 × 10−5 with a warm-up phase of 512 iterations, and
gradient clipping to a norm of 10−3.



chair lego materials mic hotdog ficus drums ship
PhySG [7] 24.00 20.19 18.86 22.33 24.08 19.02 20.99 15.35
VolSDF [6] 30.57 29.46 29.13 30.53 35.11 22.91 20.43 25.51
Mip-NeRF [1] 35.12 35.92 30.64 36.76 37.34 33.19 25.36 30.52
Ours, standard encoding 35.86 36.33 35.22 35.84 38.18 33.60 26.03 30.17
Ours 35.83 36.25 35.41 36.76 37.72 33.91 25.79 30.28

Table S1. Per-scene test set PSNRs on the Blender dataset [5].
chair lego materials mic hotdog ficus drums ship

PhySG [7] 0.898 0.821 0.838 0.933 0.912 0.873 0.884 0.727
VolSDF [6] 0.949 0.951 0.954 0.969 0.972 0.929 0.893 0.842
Mip-NeRF [1] 0.981 0.980 0.959 0.992 0.982 0.980 0.933 0.885
Ours, standard encoding 0.984 0.981 0.983 0.991 0.984 0.982 0.939 0.878
Ours 0.984 0.981 0.983 0.992 0.984 0.983 0.937 0.880

Table S2. Per-scene test set SSIMs on the Blender dataset [5].
chair lego materials mic hotdog ficus drums ship

PhySG [7] 0.093 0.172 0.142 0.082 0.117 0.112 0.113 0.322
VolSDF [6] 0.056 0.054 0.048 0.191 0.043 0.068 0.119 0.191
Mip-NeRF [1] 0.020 0.018 0.040 0.008 0.026 0.021 0.064 0.135
Ours, standard encoding 0.017 0.018 0.023 0.008 0.022 0.020 0.059 0.143
Ours 0.017 0.018 0.022 0.007 0.022 0.019 0.059 0.139

Table S3. Per-scene test set LPIPS on the Blender dataset [5].
chair lego materials mic hotdog ficus drums ship

PhySG [7] 18.569 40.244 18.986 26.053 28.572 35.974 21.696 43.265
VolSDF [6] 14.085 26.619 8.277 19.579 12.170 39.801 21.458 16.974
Mip-NeRF [1] 28.044 30.532 64.074 36.489 29.303 53.524 32.374 37.667
Ours, standard encoding 20.018 26.471 10.162 25.921 13.920 41.557 27.766 34.212
Ours 19.852 24.469 9.531 24.938 13.211 41.052 27.853 31.707

Table S4. Per-scene test set normal MAEs on the Blender
dataset [5].

Additional Model Details The three factors of our de-
composition of color into diffuse and specular components
use different nonlinearities to map the outputs of the MLPs
to their appropriate ranges. The tint s and specular color
cs are computed using a sigmoid applied to the raw outputs
from the MLPs:

cs = σ(c̃s) (S18)
s = σ(s̃),

where c̃s is the three-channel raw specular color output by
the directional MLP, and s̃ is the three-channel raw tint out-
put by the spatial MLP.

The diffuse color is computed by passing the correspond-
ing three spatial MLP channels through an offset sigmoid
function as follows:

cd = σ(c̃d − log 3), (S19)

where c̃d is the spatial MLP’s raw output. The log 3 offset
is designed to initialize the diffuse color around 0.25, which
initializes the combined raw color to around 0.5.

The three factors are then combined into a single color
using Equation 9 from the main paper.

D. Evaluation Details
Normal Vectors To compute the normal vector for a ray,
we sample normals along the ray {n̂i} using Equation 3
from the main paper, and use the volume rendering proce-
dure from Equation 1 to compute a single normal vector:

N(o, d̂) =
∑
i

win̂(xi). (S20)

teapot toaster car ball coffee helmet
PhySG [7] 35.83 18.59 24.40 27.24 23.71 27.51
Mip-NeRF [1] 46.00 22.37 26.50 25.94 30.36 27.39
Mip-NeRF, 8 layers 47.35 25.51 27.99 27.53 32.14 29.04
Mip-NeRF, 8 layers, w/ normals 47.09 25.14 27.97 26.79 32.12 29.21
Mip-NeRF, 8 layers, with Ro 47.35 25.32 27.91 26.89 32.21 29.22
Ours, no reflection 44.74 24.04 27.41 20.94 31.95 27.76
Ours, no Ro 46.80 25.78 28.43 27.06 32.58 29.06
Ours, no pred. normals 47.09 23.32 27.19 26.09 31.79 30.54
Ours, concat. viewdir 46.01 25.38 30.71 47.45 34.19 28.81
Ours, fixed lobe 46.82 25.57 30.09 47.25 34.37 29.00
Ours, no diffuse color 46.45 25.56 30.46 34.53 34.05 28.87
Ours, no tint 46.54 25.49 30.14 47.53 34.24 28.78
Ours, no roughness 45.28 25.39 30.44 36.33 33.19 29.72
Ours, standard encoding 46.55 26.74 30.53 47.56 34.45 29.59
Ours 47.90 25.70 30.82 47.46 34.21 29.68

Table S5. Per-scene test set PSNRs on our Shiny Blender dataset.
teapot toaster car ball coffee helmet

PhySG [7] 0.990 0.805 0.910 0.947 0.922 0.953
Mip-NeRF [1] 0.997 0.891 0.922 0.935 0.966 0.939
Mip-NeRF, 8 layers 0.997 0.925 0.936 0.949 0.971 0.957
Mip-NeRF, 8 layers, w/ normals 0.997 0.923 0.936 0.946 0.970 0.957
Mip-NeRF, 8 layers, with Ro 0.997 0.924 0.935 0.947 0.971 0.957
Ours, no reflection 0.996 0.912 0.930 0.905 0.970 0.950
Ours, no Ro 0.997 0.926 0.937 0.939 0.971 0.956
Ours, no pred. normals 0.997 0.898 0.926 0.865 0.967 0.962
Ours, concat. viewdir 0.997 0.919 0.956 0.995 0.974 0.952
Ours, fixed lobe 0.997 0.920 0.952 0.995 0.974 0.954
Ours, no diffuse color 0.997 0.920 0.953 0.977 0.973 0.954
Ours, no tint 0.997 0.921 0.951 0.995 0.974 0.954
Ours, no roughness 0.996 0.917 0.954 0.983 0.972 0.958
Ours, standard encoding 0.997 0.928 0.954 0.996 0.975 0.958
Ours 0.998 0.922 0.955 0.995 0.974 0.958

Table S6. Per-scene test set SSIMs on our Shiny Blender dataset.
teapot toaster car ball coffee helmet

PhySG [7] 0.022 0.194 0.091 0.179 0.150 0.089
Mip-NeRF [1] 0.008 0.123 0.059 0.168 0.086 0.108
Mip-NeRF, 8 layers 0.006 0.080 0.052 0.139 0.082 0.072
Mip-NeRF, 8 layers, w/ normals 0.006 0.085 0.052 0.144 0.082 0.072
Mip-NeRF, 8 layers, with Ro 0.006 0.082 0.052 0.143 0.082 0.072
Ours, no reflection 0.007 0.091 0.052 0.192 0.082 0.080
Ours, no Ro 0.008 0.086 0.051 0.161 0.082 0.076
Ours, no pred. normals 0.006 0.134 0.064 0.272 0.087 0.068
Ours, concat. viewdir 0.006 0.095 0.040 0.061 0.079 0.087
Ours, fixed lobe 0.009 0.096 0.043 0.061 0.080 0.080
Ours, no diffuse color 0.009 0.096 0.043 0.095 0.079 0.080
Ours, no tint 0.008 0.094 0.043 0.060 0.079 0.078
Ours, no roughness 0.009 0.099 0.042 0.086 0.081 0.074
Ours, standard encoding 0.007 0.092 0.041 0.060 0.077 0.074
Ours 0.004 0.095 0.041 0.059 0.078 0.075

Table S7. Per-scene test set LPIPS on our Shiny Blender dataset.
teapot toaster car ball coffee helmet

PhySG [7] 6.634 9.749 8.844 0.700 22.514 2.324
Mip-NeRF [1] 66.470 42.787 40.954 104.765 29.427 77.904
Mip-NeRF, 8 layers 68.238 35.220 23.670 127.863 25.465 67.966
Mip-NeRF, 8 layers, w/ normals 67.999 34.093 23.548 130.755 26.527 66.701
Mip-NeRF, 8 layers, with Ro 68.238 35.837 23.985 127.683 24.101 64.372
Ours, no reflection 19.263 19.325 13.643 15.142 9.730 20.038
Ours, no Ro 43.116 43.113 37.134 106.003 29.301 56.710
Ours, no pred. normals 67.999 24.886 21.644 48.061 10.848 10.573
Ours, concat. viewdir 20.359 40.587 12.877 1.577 9.489 42.615
Ours, fixed lobe 35.791 42.183 18.410 1.536 24.045 36.785
Ours, no diffuse color 38.347 42.705 16.802 5.423 15.363 38.119
Ours, no tint 29.537 43.687 16.854 1.556 11.233 33.327
Ours, no roughness 33.821 44.666 17.440 3.557 26.578 29.723
Ours, standard encoding 23.123 41.415 16.214 1.969 9.749 29.409
Ours 9.234 42.870 14.927 1.548 12.240 29.484

Table S8. Per-scene test set MAEs on our Shiny Blender dataset.

We use Equation S20 to visualize normal maps, with
gray-colored values corresponding to high variance normal
vectors along a ray. For evaluating MAE, we use the nor-
malized accumulated normals, N̂ = N/∥N∥.



Figure S2. Rendered images and normals estimated by our method on all 14 scenes in the Blender and Shiny Blender datasets.



sedan toy car garden spheres
Mip-NeRF, 8 layers 25.53 / 0.729 / 0.118 24.00 / 0.663 / 0.177 23.40 / 0.620 / 0.125
Ours 25.65 / 0.720 / 0.119 24.25 / 0.674 / 0.168 23.46 / 0.601 / 0.138

Table S9. Quantitative metrics (PSNR/SSIM/LPIPS) on the test
sets of our real captured scenes.

E. Additional Results
Table S9 reports quantitative metrics on the test sets (ev-

ery eighth image is held out for testing, as done in NeRF [5])
of our three real captured scenes. Tables S1, S2, S3,
and S4 contain quantitative metrics on the original synthetic
Blender dataset, and Tables S5, S6, S7, and S8 contain
quantitative metrics on our new synthetic Shiny Blender
dataset.

Figure S2 shows a rendered image and the normals esti-
mated by our method for all 14 scenes from the Blender and
Shiny Blender datasets.

Baseline Implementations For comparisons to mip-
NeRF [1], we use the official open-source JAX implementa-
tion. For comparisons to PhySG [7], we use the official Py-
Torch code open-sourced by the authors. However, the orig-
inal hyperparameters produce poor results on our datasets,
so the PhySG authors helped us tune their hyperparame-
ters for the Blender datasets. VolSDF [6] does not currently
have publicly-available code, but the authors graciously ran
their code on the Blender dataset and provided us with ren-
dered test-set images and normals. We report the NSVF [4]
and NeRF [5] results on the Blender dataset from the tables
in the mip-NeRF paper.

F. Dataset Details
Our new “Shiny Blender” scenes were adapted from the

the following BlendSwap models:
1. Coffee: created by sleem, CC-0 license (model

#10827).
2. Toaster: created by PrinterKiller, CC-BY license

(model #4989)
3. Car: created by Xali, CC-0 license (model #24359).
4. Helmet: created by kveidem, CC-0 license (model

#21617).
Our dataset of real scenes was captured by the authors.

G. Societal Impact
Environmental impact is a significant concern when

training NeRF-based models, as they typically require hours
of training per scene. We hope that future improvements to
NeRF and continued progress in developing efficient ML
accelerators will ameliorate this issue. 3D scene recon-
struction techniques such as ours can also be used for illicit
surveillance. In particular, improved rendering of shiny sur-
faces has the potential to reveal details of objects outside of

the cameras’ fields of view by reconstructing their reflec-
tions off of visible objects.

References
[1] Jonathan T. Barron, Ben Mildenhall, Matthew Tancik, Peter

Hedman, Ricardo Martin-Brualla, and Pratul P. Srinivasan.
Mip-NeRF: A multiscale representation for anti-aliasing neu-
ral radiance fields. ICCV, 2021. 3, 4, 6

[2] James Bradbury, Roy Frostig, Peter Hawkins, Matthew James
Johnson, Chris Leary, Dougal Maclaurin, George Necula,
Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne,
and Qiao Zhang. JAX: composable transformations of
Python+NumPy programs, 2018. http://github.com/
google/jax. 3

[3] Diederik P. Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. ICLR, 2015. 3

[4] Lingjie Liu, Jiatao Gu, Kyaw Zaw Lin, Tat-Seng Chua, and
Christian Theobalt. Neural sparse voxel fields. NeurIPS,
2020. 6

[5] Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik,
Jonathan T. Barron, Ravi Ramamoorthi, and Ren Ng. NeRF:
Representing scenes as neural radiance fields for view synthe-
sis. ECCV, 2020. 4, 6

[6] Lior Yariv, Jiatao Gu, Yoni Kasten, and Yaron Lipman. Vol-
ume rendering of neural implicit surfaces. NeurIPS, 2021. 4,
6

[7] Kai Zhang, Fujun Luan, Qianqian Wang, Kavita Bala, and
Noah Snavely. PhySG: Inverse rendering with spherical gaus-
sians for physics-based material editing and relighting. CVPR,
2021. 4, 6

http://github.com/google/jax
http://github.com/google/jax

	. Integrated Directional Encoding Proofs
	. Interpretations of Normal Vector Penalty
	. Optimization and Additional Model Details
	. Evaluation Details
	. Additional Results
	. Dataset Details
	. Societal Impact

