7. CroMo: Supplementary Material

We provide additional materials to supplement our main
paper. In Sec. 7.1 we provide observations on the proper-
ties of light polarisation. Sec. 7.2 states the specifics for
our surface normal estimation process. In Sec. 7.3, we pro-
vide additional details for our multi-view camera calibration
procedure, Sec. 7.4 provides some further modelling details
and finally Sec. 7.5 gives supplementary information on our
network architectures and learning parameters.

7.1. Light polarisation parameters
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Figure S1. (a) differing types of reflected light and (b) the link
between a surface normal n, its viewing angle 6 and its azimuth
angle « (right).

Most natural light sources emit unpolarized light that
only becomes polarized if reflected. Hence the type of re-
flection, illustrated in Fig. S1, either diffuse (d) or specular
(s), influences the characteristics of the reflected polarized
light. More specifically, the reflective surface influences the
relation between the normals’ parameters (6, «) and the po-
larisation parameters (p, ¢), defined in Eq. 2 and 3 of the
main paper.

7.2. Surface normals

In the main manuscript we estimate polarisation intensity
using the varying coordinates of surface normals. Hence,
the computation of these normals, derived from network
depth prediction, plays an important role in the training pro-
cess. To increase the robustness of estimated normals, we
compute the cross products using four distinct pairs of or-
thogonal directions as in [S4]:
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The weighted average of these normals is calculated using
weights w; where:
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The final surface normal (unnormalized) is then estimated
by their linear combination:
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Weights w; result in neighbouring pixels of ¢,,,, that contain
strong color disparity, to be down-weighted in the normal
computation. This follows from the assumption that such
pixels are more likely to represent different objects. Con-
versely, if neighbouring pixels possess similar color, they
are more likely to correspond to the same object and their
associated partial derivatives are more likely to provide nor-
mals that accurately describe the observed object shape.

7.3. Graph-based bundle adjustment

As discussed in Sec. 4.1 of our main paper the calibration
of extrinsics, intrinsics and distortion coefficients, for all
four capture-rig cameras, is achieved using a graph-based
bundle-adjustment [S2] that improves multi-view calibra-
tion. We provide here further details of our multi-view cal-
ibration procedure.

We start with well established calibration methods [S1]
to obtain the intrinsics K and distortion coefficients dy,
for each camera Cy, where £ € {0,1,2,3}. We use a
standard pinhole camera model and define Cj as the left
polarisation camera, C; the right polarisation camera,
Cs the i-ToF camera, and C3 the structure light camera.
We use five parameters for the distortion coefficients
and collect n images of a calibration checkerboard, from
all cameras synchronously. In practice we move the
checkerboard in front of the cameras while keeping the
camera rig stationary. We attempt to cover as wide a
field-of-view as possible for all four cameras. We find
it is more important to thoroughly cover and account for
the extremities of the individual images as opposed to
attempting to be visible to all cameras simultaneously.
Further, we estimate the rigid transformation for each
camera pair composed of C (our world reference), and
camera C}, in turn, where &k € {1,2,3}. This provides
the extrinsics Tyo = [Ri—o|tr—o] for camera Cy (with
To—0 = [1]0]).

These initial intrinsic, extrinsic parameter values and the
distortion coefficients are however sub-optimal as they are
obtained by solving successive sub-optimisation problems.
Towards improving the multi-camera calibration, we define
the reprojection error of points X7 on the image I; for the
camera C}, as
I’; =T (Tk—>07 TOZ? X]7 dk? Kk)
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Where T¢ is the position of camera Cy for image 4, and

1’] is the distorted 2D point from the projection function
7(+) which projects a 3D Point X/ visible by the camera
C}, at position Tg - Ty _,o with distortion coefficients dj and
intrinsic parameters K on image I;. The function dist(-)
defines the robustified distance between 2D points, i.e. a
Huber m-estimator, and .Z‘z is the 2D point detected on the
checkerboard with a corner detector corresponding to the

3D point X7 in image I;. The indicator function ]l;;e I
5€4i

defines whether the 2D Point 7/“\; is visible in image I;.

Finally, we used a graph-based bundle-adjustment [S2] to
model the global problem, for all cameras C, jointly as:
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with T fixed to [Z|0] in order to properly constrain the
gauge freedom. All camera calibration parameters are
initialised using the values obtained from the original
individual calibrations.

This formalism, borrowed from the SLAM commu-
nity [S3], allows us to optimize all parameters, i.e. the in-
trinsic, the extrinsic and the distortion parameters for all
cameras, jointly. We find the global optimisation process
is able to improve our calibration RMSE by ~5-10%.

7.4. Additional modelling details
7.4.1 Reflection ambiguities

A diffuse-specular ambiguity initially exists in our formu-
lation; pertaining to diffuse or specular reflection (see Eq.3,
main paper). This ambiguity is addressed during training
via the min operator found in Eq.18. We propose to re-
solve reflection ambiguities (per-pixel) by minimization of
the SSIM loss between respective {specular, diffuse} im-
ages and the input image, towards consistently providing a
valid training signal. Secondly, the azimuthal m-ambiguity
is directly accounted for by the formulation of Eq.1; the
inherent cos(-) modulation nullifies ambiguity found in its
input (2¢ component of the argument) and thus supervision
is not adversely affected due to ¢ being modulo 7.

7.4.2 Wrappings ambiguities

An analytical solution exists for the correlation to depth
transform and a wrapping ambiguity remains. However
we highlight that a reconstructed depth, although “phase
wrapped”, is still able to provide reliable surface normals
that can be used to produce (1) the degree of linear polar-
isation and (2) the Angle of Polarisation, for both diffuse
and specular surfaces. Once these are projected to the N2

referential, this information is used in conjunction with the
brightness of the left polarisation image to render valid “Re-
covered polarisation” images, (see Fig 3b of our main pa-

per).

7.4.3 Polarization intensity recovery

To render the intensity, we require the brightness of each
pixel (i, in Eq.1). We obtain the brightness of the polari-
sation image by channel-wise summing of the left polarisa-
tion input pixel values. Two images are rendered following
Eq.1; for both the cases of diffuse and specular images. We
use a binary mask to select values, pixel-wise, from either
the specular or diffuse image. The mask selects pixels such
that the minimum SSIM loss between the {specular, dif-
fuse} image and the input image are retained.

The two images formed therefore constitute only an
intermediary step towards producing a final image. We
use a binary mask to then select values, pixel-wise, from
either the specular or diffuse image to form a new image
containing the pixels that retain the minimum SSIM loss
between the {specular, diffuse} image and the input image
(i.e. the min in Eq.18 is per pixel). We thus form a final
image that contains both specular and diffuse components.

7.4.4 Correlation image rendering from depth

Analogous to the Polarization image strategy, we use the
input correlation image (obtaining «, 8 estimates), in ad-
dition to depth information, to estimate both the ambient 3
and reflectance «, for correlation reconstruction.

7.5. Architecture and training details

7.5.1 Architecture

We provide additional description for the network archi-
tecture that we propose in order to process the considered
input modalities. Instances of this architecture are depicted
as edges ‘N1’ and ‘N2’ in the system design; see Fig 3a of
our main paper.

We employ a standard U-Net architecture, similar to our
baseline [22], including skip connections. The encoder is
based on a ‘Resnet’ [28] style block, with the original con-
volutional layer replaced by gated convolution [63]. The
size of the input images are 512x544x12 for polarisation
and 640x480x4 for i-ToF, respectively.

For polarisation, we have the following configuration;
layer one: 512x544x64, layer two: 256x272x128,
layer tree: 128x136x256, layer four: 64x68x512. For
i-ToF, we have the following configuration; layer one:
640x480x64, layer two: 320x240x128, layer tree:
160x120x%256, layer four: 80x60x512. Both depth and



Displacement Field decoders are a standard cascade of
convolutions with layer resizing. Encoder skip connections
are concatenated after each resize operation (see Fig. 3a).

7.5.2 Training parameters

To aid reproducibility, we report training parameters and
hyperparameters. We use identical training parameters and
align with our baseline [22] where possible. We use the
Ranger optimiser [S5] and batch sizes of 8, a learning rate
of 1le—4 with an exponential learning rate decay. We train
all considered methods for 50 epochs.

7.5.3 Comparison with RGB input

A direct comparison with RGB input forms a relevant and
interesting line of enquiry. Our custom capture rig does not
currently accommodate this modality directly. However, to-
wards investigating this experimentally, we did transform
the polarisation input frame to an RGB frame by consid-
ering the polarisation intensity of each RGB channel, in-
dividually. We note that this is not directly equivalent to
an RGB sensor since the bayer pattern differs. We ac-
tively decided not to include this experimental work in
the main paper to avoid misinterpretation and confusion.
Preliminary work evaluating our Polarisation input cf. the
noted “Polarisation-converted-to-RGB” showed improve-
ments using Polarisation (RMSE 1.4) over “Polarisation-
converted-to-RGB” (RMSE 1.53).

7.5.4 Controlling for capture environment

We note that the i-ToF modality excels in indoor environ-
ments, however these represent a relatively smaller portion
of our dataset. To corroborate this, we report an experiment
that considers our various training strategies, tested on only
an indoor environment (Kitchen). The addition of i-ToF
(from (S) to (ST)), at training time, significantly improves
the predicted depth in this restricted setting (see Tab. S1).

Image Training

sensors | strategy | SqRel RMSE RMSE Log
2 (S) 0.6202  1.2930 0.2944
3 (ST) 0.3001  0.6520 0.2237
4 (STLM) | 0.2105 0.5431 0.180

Table S1. Test on Kitchen scene (780 frames): additional sensors
can be observed to improve performance. The largest improve-
ment comes from the addition of the i-ToF, (from (S) to (ST)), in
an exclusively indoor test setting.

7.5.5 Further analysis of where additional sensors help

We include preliminary further analysis with respect to in-
vestigation of scenarios where additional sensors help. We
include an example that highlights two points (see Fig. S2).
Due to the concave nature of the scene, the addition of ToF
information alone during training (from S to ST) adversely
impacts the depth prediction and we find MPI often detri-
mental to the ToF sensor in such cases. Additional sensors
(from ST to STLM) do however improve final depth esti-
mation and we show gains achievable by adding orthogonal
signal during training, where inference utilises only a sin-
gle polarisation image in all cases. Additional investigation
and rigorous analysis of such scenarios makes for interest-

ing future work.
c. ST d. STLM
Figure S2. Depth estimation improvements possible from a com-

a. Pol. Intensity b. S
mon input (a). We show gains achievable by adding orthogonal
signal during training, where inference utilises only a single polar-
isation image in all cases. See text for further detail.

7.5.6 Additional structured light experiments

The structured light sensor present in our camera rig offers
low-noise signal which we find can also be leveraged in a
supervised fashion, directly. For completeness, we com-
pare the resulting depth estimation when supervising di-
rectly with structure-light (D) and our approach, using un-
supervised signals (STLM). The structure-light signal, ob-
tained from our Realsense sensor, is claimed reliable up to
a 10 meters range according to the constructor [1]. We thus
further investigate by evaluating performance over distinct
0 — 10m and 0 — 20m ranges. Results in Tab. S2 show
that the fully supervised method (D) can offer similar per-
formance to our approach (STLM) in the range 0 — 10m
yet performance degrades by significant margins when con-
sidering the more challenging 0 — 20m range. This high-
lights the benefits of our unsupervised multi-modal strat-
egy (STLM); leveraging information from multiple sensor
sources and an ability to learn to adapt when a particular
sensor results in low quality measurement, due to unsuitable
physical conditions (e.g. structured light in the 10 — 20m
range).

7.5.7 Additional details on the Lgpyct loss

We select to use a structured light loss similar to the loss
proposed in [59]. We find that such indirect supervision of



Image | Training 0-10m 0-20m

sensors | strategy | SqRel RMSE RMSELog | SqRel RMSE RMSE Log
1 (D) 0.9479  1.4246 0.2117 5447  6.2629 1.6134
4 (STLM) | 1.0031  1.4889 0.2527 1.3994 2.9512 0.3879

Table S2. Comparison of training strategies for two depth predic-
tion ranges. Our training strategy (STLM) works well in spite of
the operational limits of particular sensors.

the structure light signal allows to automatically select the
best source of information, particularly in situations where
the structure light signal fails or becomes unreliable (as dis-
cussed in Sec. 7.5.6). Formally, given a depth from the
structured light Dy, the loss reads:

struct

Estruct = Epe (Ila Iright — left) (S6)

We make use of an additional £, loss between predicted
depth and the Dgyy depth, when Ly is minimal (see
Eq.19 in the main manuscript).

7.5.8 Limitations and Societal Impact

Limitations We note distinct limitations that relate to our
sensor setup. Active sensors have limited range and areas of
operativity e.g. i-ToF often offers weaker performance out-
doors, structure light sensors are of limited range, and po-
larisation sensors sacrifice spacial sampling resolution for
spectral sampling resolution. Our multi-modal ideas at-
tempt to combat these limitations indirectly however we re-
main bound by the physical laws of light.

Additionally, our current hardware setup is operable by
a single person, and yet data capture is currently more cum-
bersome than e.g. use of a modern smartphone. Training
data collection, that involves the acquisition of multiple
modalities, currently induces a somewhat larger investment
of effort over monomodal capture. With the argument being
that the cost may then be recouped when assessing monoc-
ular inference time performance. Our hardware rig consti-
tutes a research prototype and form factor likely improves
as camera evolution results in further reductions in sensor
size, weight and cost.

Finally we would note that our current dataset does
not yet capture all possible scenarios and represents but a
subset of urban scenes where depth estimation can prove
valuable. Future capture sessions will look to enrich and
widen the recorded capture scenarios, towards increasing
the value of the data resource that we provide to the
community.

Societal Impact We note that our proposed CroMo dataset
was collected by only two human operators in urban envi-
ronments. While care was taken towards objective scene
capture, such collected data may yet reflect the biases of
human operators; influencing specific content, scenarios or

capture setups. Efforts towards the reduction of bias, intro-
duced by manual human operators, might suggest mount-
ing of the system on automatic vehicles in future. Addi-
tional ideas, toward mitigation of the axis of bias relating to
manual data capture, can be considered an interesting future
research direction.
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