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1. Introduction

This Supplemental Document provides additional information in support of the findings in the main manuscript. In
Section 2, additional details on gated imaging are presented. Section 3 provides additional information about the temporal
gated imaging dataset, and Section 4 describes further details of the network architecture. In Section 5, utilized masks and
loss functions are explained in more detail and Section 6 provides additional evaluation details for the reference methods.
Section 7 provides additional detail on the mask hyperparameters. In Section 8 and 9, we provide quantitative and qualitative
results for our Gated2Gated framework.

2. Gated Imaging

In this section, we describe the gated imaging process in more detail than provided in the main manuscript. We assume a
rectangular exposure function p(t) and rectangular gating function g(t). Considering a single pixel, which captures reflected
photons of a point at a certain distance r, the corresponding photons require a round-trip time of 2{ to reach the camera after
being emitted by the source. This means we receive the signal p (t - 2%) at the sensor. The shutter of the sensor opens after
a delay of ¢ and remains open for the gate duration ¢o. During the gating time ¢, all incident photons get integrated on
the CMOS sensor. As such, the intensity value Z(r) of the considered pixel is defined by the convolution of the gate pulse
g (t — &) and laser pulse p (t — 2°), that is
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where ¢ denotes the reflectivity, and the laser illumination ¢ defines the maximum amplitude of the laser pulse. The reflectivity
¢ depends on the spectral distribution of the scene illumination, the reflectance of the scene surfaces, and the atmosphere’s
water vapor content. Atmospheric effects, which are independent of object surfaces, are modeled by
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with laser power Py, horizontal/vertical field of illumination 0 /6y, pixel pitch p, aperture F,,y,, wavelength A, Planck
constant h, optical transmission Topics, and atmospheric attenuation coefficient v. When ambient light occurs due to sunlight
or other light sources in the scene, Equation 1 becomes
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where x denotes the ambient light falling on the considered point and ¢« indicates the level of reflected light reaching the

sensor. Assuming constant ambient light during the gating time ¢¢;, the captured ambient light results in A = ¢« [ 9t —



Laser

Laser Power Paser 500 W
Wavelength A 808 nm
Horizontal Field of Illumination 60 24°
Vertical Field of Illumination Oy 8°

Camera

Pixel pitch p 10 um
Aperture Fom 1.2
Optical transmission Toptics 0.64
Focal length f 23 mm
Horizontal Field of View O 31.1°
Vertical Field of View Oy 17.8°
Resolution 1280x720

Table 1. Laser and camera specifications of the Brightway Vision BrightEye

tp)dt. After read-out, the final measurement Z (r) for each pixel location is obtained by
Z(r) = aC(r)+ A+ ng+ mp = aC(r) + A, @)

where 7, models the signal-dependent Poisson photon shot noise and 7, Gaussian read-out noise [3]. To increase the SNR,
multiple laser pulses are integrated on the sensor before read-out.
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Figure 1. Measurements of the range-intensity-profiles used in this work. Solid lines identify the theoretically calculated profiles with the

parameters from Table 1 und Table 2. Crosses mark real world measurements on reflectivity targets and their corresponding continuous
Chebychev approximations are plotted with dashed lines.

In this work, we use Equation 4 to model gated images and to learn depth in self-supervised fashion by separating input
gated images into albedo «, ambient illumination A, and depth r. The gating parameters of the three input gated images are
defined in Table 2 and the specifications for laser and camera employed in our work are reported in Table 1.

The range-intensity profiles resulting from the proposed gate parameters are documented in Figure 1. In addition to the
analytically calculated profiles (full lines), Figure 1 lists real measured pixel intensity values (crosses) and the correspond-
ing approximations (dashed lines), which are used for the cycle reconstruction approach. The real profiles are measured
experimentally on targets with defined reflectivity at night and are approximated with Chebyshev polynomials 7},

To=1, Ti=x, Ty =22T,—T,_1, ()

up to order of N = 6. We use the real-world measurements to calibrate unknown parameters such as the dark level of the
camera or delays due to the signal runtime to adjust the real-world measurements to the analytical solutions. The gating



Laser duration  Gate duration Delay & Pulses

Slice 1 240 ns 220 ns 260 ns 202
Slice 2 280ns 420 ns 400 ns 591
Slice 3 370ns 420 ns 750 ns 770

Table 2. Definitions of the gating parameters that we use for the experimental acquisition in this work.

settings correspond to depth slices between 3-72m, 18-123 m, and 57-176 m, respectively. Since the laser illumination
decreases quadratic with the distance, we compensate for the lower illumination with a higher number of laser pulses for far
distances.

3. Temporal Gated Imaging Dataset

In this section, we provide additional details on the gated video sequences that were captured to train the proposed method.
Two temporal sequence examples are shown in Figure 3. Note that existing gated datasets [1] do not include temporal
sequences. The dataset consists of 1,835 video sequences captured at 10 Hz. The videos were uniformly sampled at 0.1 Hz to
extract an initial set of keyframes. We then selected the top 13,000 most interesting keyframes and extracted a long sequence
(then at 10 Hz) centered around those keyframes. The final key frames include a wide variety of scenarios, including day,
night, fog, snow, and clear weather conditions. The distributions for different times of day and weather conditions are reported
in Figure 2. The complete dataset, which includes synchronized monocular gated and RGB images, adds up to 200 TB.
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Figure 2. Distribution of different adverse weather effects within the captured temporal gated dataset.
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Figure 3. Sample frames from a video sequence in (a) night and (b) light fog weather conditions. Each frame contains three gated slices,
concatenated as R,G,B channels for visualization (red color correspond to close depth slices, and blue correspond to far depth slices).



4. Additional Network Details

The Gated2Gated architecture consists of three different components: a depth prediction network f,. , a pose prediction
network fi_,n, and an albedo/ambient prediction network fa.. For the depth prediction network, we adopt the PackNet
architecture [10] with four 3D-convolutions, and for pose prediction, we use the network proposed in [13]. The fa, network
consists of one encoder and two separate decoders for albedo and ambient illumination. The encoder and decoder networks
are a variant of the popular U-Net. The encoder consists of four convolutional layers with 3 x 3 kernels and a max-pooling
operation and batch normalization after each layer. The decoder includes four pairs of flat and transposed convolutional
layers. Furthermore, we use skip connections between the encoder and decoder to share semantic context at different feature
scales. The detailed architecture descriptions of our modified U-Net-based network for joint albedo and ambient estimation
is provided in Table 3.

ENCODER
Layers # Layer Description Output Shape
0 Input 3xHxW
Conv 3 x 3 32x Hx W
LeakyReLU (v = 0.2) 32 x H x W
la ConvBlock-1 BatchNorm2D 32x Hx W
Conv 3 x 3 32 x Hx W
LeakyReLU (v = 0.2) |32 X H x W
BatchNorm2D 32 x Hx W
1b MaxPool2D 32x £ x W
2a ConvBlock-2 64 x % X %
2b MaxPool2D 64 x &£ x ¥
3a ConvBlock-3 128 x & x W
3b MaxPool2D 128 x £ x W
4a ConvBlock-4 256 x 4 x W
4b MaxPool2D 256 x £ x W
5 ConvBlock-5 512 x % X %
ALBEDO (DECODER) AMBIENT (DECODER)
Layer # Layer Description Output Shape Layer Description Output Shape
6a Upsampling1 ConvTranspose2D (kernel = 2) 956 x % « % Upsampling-1 ConvTranspose2D (kernel = 2) 956 x % « %
BatchNorm2D BatchNorm2D
6b Concat-1 Layer #6a @ Layer #4a 512 x % X % Concat-1 Layer #6a @ Layer #4a 512 x % X %
Conv (3x3) Conv (3x3)
LeakyReLU (o = 0.2) LeakyReLU (av = 0.2)
6c | UpConvBlock-1 [oehNorm2D 256 x H x W | | UpConvBlock.1 [L2ehNom2D 256 x 2 x W
Conv (3x3) Conv (3x3)
LeakyReLU (o = 0.2) LeakyReLU (o = 0.2)
BatchNorm2D BatchNorm2D
Ta Upsampling-2 128 x & x W Upsampling-2 128 x & x W
7b Concat-2 ‘Layer #7a @ Layer #3a ‘256 X % X % Concat-2 ‘Layer #7a @ Layer #3a 256 x % X %
Te UpConvBlock-2 128 x & x W UpConvBlock-2 128 x & x W
8a Upsampling-3 64 x % X % Upsampling-3 64 x % X %
8b Concat-3 ‘Layer #8a @ Layer #2a ‘ 128 x % X % Concat-3 ‘Layer #8a @ Layer #2a ‘ 128 x % X %
8¢ UpConvBlock-3 64 x & x W UpConvBlock-3 64 x & x W
9a Upsampling-4 32X HXxW Upsampling-4 32X HXW
9b Concat-4 ‘Layer #9a @ Layer #la ‘ 64 x Hx W Concat-4 ‘ Layer #9a @ Layer #1a ‘ 64 x Hx W
9c UpConvBlock-3 32x HxXxW UpConvBlock-3 32X HXxW
10 ConvlD 1x HXxW ConvlD 1x HxW

Table 3. Our U-Net based architecture for fan. Here, @ defines channel concatenation across feature tensors, o defines slope of
LeakyReLU. We have two output heads : 1) Albedo and 2) Ambient sharing same encoder backbone. We have modified existing U-
Net by adding BatchNorm2D layers, which leads to more stable training in our experiments.



5. Additional Loss Details
Next, provide additional information on the used loss functions and validity masks.

5.1. Additional Detail on Passive Supervision Loss

The ambient illumination can include sunlight and other light sources. By using a narrow-band filter adjusted to the
wavelength of the laser, the gated camera is able to reduce the ambient light significantly. However, sunlight contains a
strong NIR component, and ambient illumination is still present in the gated slices, especially during daytime. To learn
the ambient illumination of the scene, our network gets supervised by a passive image captured by the same gated camera
and deactivated laser illumination. The passive image Zf is recorded with an optimized exposure duration to allow the best
capturing of all image details even in dark conditions and strong blending sunlight. To align the passive exposure time with
the active gated slices, the passive intensities have to be scaled accordingly with factor s, assuming a linear exposure curve.
Additionally, we have to ensure equal passive illumination in each of the gated slices. Since the three gated slices are captured
with a different number of laser pulses and varying gating duration (see Figure 2), we add to each slice an variable exposure
with deactivated illumination to ensure the same total integration for each gated slice. This ensures that the passive part
within each gated slice is equal. This facilitates the learning and supervision of the ambient component. The final passive
supervision loss is defined by the photometric loss between ambient prediction A and scaled passive image Z7, that is

1-SSIM(A,s,ZP)

L,(A,ZP)=0.85- +0.15 - ||A—s, 27| ]1. (6)

5.2. Additional Qualitative Results for Cycle Reconstruction Predictions

New now take a closer look at the components required for the cycle reconstruction loss. Our method predicts scene
depth, surface albedo (NIR reflectivity) and ambient illumination. The depth-dependent intensity profile, albedo and ambient
components are combined in our method to reconstruct the input gated images.

Figure 4 shows qualitative examples of the three input gated images, the passive image, as well as the predicted depth,
ambient illumination, and albedo. At night, the ambient images are almost completely dark. Only active light sources, such
as car lights or traffic lights, are captured in the ambient image. During the daytime, sunlight results in strong ambient
components, resulting in bright images. In contrast, the albedo images are consistent for day and night. Please note that
shadows behind objects appear due to the different mounting positions of the active illumination source and the gated camera.
Furthermore, it is possible to recognize the oval shape of the active illumination represented by the dark edges in the albedo.
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Figure 4. Qualitative examples of the three input gated slices and the passive images, and the predicted components. As a by-product, our
method reconstructs albedo and ambient illumination of the scene in addition to the depth information. The ambient image captures the
sunlight and activates light sources, such as vehicle lights or traffic lights, while the albedo captures the NIR reflectively of objects and the
illumination from the active source.



5.3. Additional Explanations on Infinity Correction Mask

We next discuss the infinity correction masks. The masks are necessary to handle dynamic scene objects not captured
by the rigid scene transformation between to adjacent temporal frames. Due to zero relative motion, dynamic objects might
remain stationary with respect to the ego-vehicle.This corresponds to these objects projected at infinity distance. Hence, the
depth is wrongly predicted. To prevent self-supervision with such incorrect depth cues, we employ infinity correction masks.

We rely on gated intensity cues to get rough depth estimates and identify regions out of bounds. The intensity depth cues
can be seen in Figure 1. The ranges for the first slice is 3-72 m, for the second slice 18-123 m and for the last slice 57-176 m.
The intensity relation allows to reason about the pixel distances depending on its intensity triplet from three different slices.
Additionally, for each overlapping slice, there are intersecting distances, where one of the slices has a higher intensity. For
example, from a distance of approx. 80 m, the last slice has the highest intensity. By demanding that intensities in the first
and second slice are higher compared to the last slice we can filter all points closer than 80 m. By comparing the intensities
between different gated slices we estimate areas up to the intersection points providing us a set of pixels with upper bound
depth.

6. Additional Evaluation Details

Next, we provide additional details for the evaluation and training of the state-of-the-art methods we compare to for this
work. To evaluate methods that use gated images as input, we crop 150 pixels on each side of the gated images, resulting
in a final resolution of 420 x 980 pixels. This center crop is required due to the reduced laser illumination at the edges of
the images where no modulation is present. For the evaluation of the RGB based methods, we crop the RGB images to a
similar view and rescale them to ensure a fair comparison between the different modalities. For the training of the stereo-
based self-supervised approach [4], we used the weights of the best model available as initialization and finetune them on
the Gated2Depth training dataset [9]. Finetuning of Sparse-To-Dense [ 1] is not possible since neither dense nor semi-dense
ground truth depth is available on our dataset. All self-supervised monocular approaches [6, | 0] are initialized with the best
RGB model available and are finetuned on the proposed temporal dataset.

7. Additional Details on Mask Hyperparameters

The cycle mask depends on the parameters -y and 6. While -y is used to remove saturated pixels,  is used as a lower bound
for the SNR value of the gated slices, restricting training to areas with reliable illumination cues. This is important as areas
that are typically not illuminated have low SNR and saturated regions result in a non-linearity not handled by our albedo
and ambient models. The infinity correction mask allows us to remove regions without temporal cues, e.g., regions that have
zero relative velocity with the ego-vehicle. To this end, we compare the intensity values of the close range gated slices with
the intensity values of the long range gated slice, and define a lower bound for the first (based on the second) as defined
in Egs. 16 & 17 of the main paper. This can also be seen as selecting pixels that have values exceeding a minimum floor
in both the close and middle gated slices, which does not happen for dynamic objects unless they are moving at the speed
of the ego-vehicle. As our goal is to select all pixels with relevant depth cues at either close or middle distances, without
distinguishing between them (Eq. 18 in main paper), we only require one value of ¢ for both the first and middle slices. Masks
for different hyperparameter settings are shown in Fig. 5. We find suitable parameters with random search on the validation
set. The results from this search are shown in Table 4. In the future, we envision learning optimal masks jointly with the
model parameters.

DAY NIGHT
c 0.7 0995 0.995 0995 1.5 0.7 0995 0.995 0995 1.5
0 0.04 0.01 0.04 0.1 0.04 | 0.04 0.01 0.04 0.1 0.04
RMSE | 1424 14.28 1342 151 1427|1194 1194 11.13 13.0 1249
MAE | 11.01 1048 996 1194 1090 | 8.63 817 7.65 9.53 8.90

Table 4. Effect of mask hyper-parameters on depth metrics [m].
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Figure 5. Cycle loss mask (top row) and infinity correction mask (bottom row) for infinite depth holes (circled) with different hyperparam-
eters. For cyclic masks, red areas correspond to saturated pixels and blue areas to low SNR.

8. Additional Quantitative Result

In this section, we provide additional quantitative results. Specifically, in Subsection 8.1 we present ablation experiments,
and in Subsection 8.2 we provide depth-resolved evaluations in different weather conditions.

8.1. Additional Ablation Studies

We investigate the influence of the depth network architecture, pretraining schemes, resolution, loss and mask combina-
tions. All ablation experiments are performed on models trained till convergence, and the best performing epoch is used for
evaluation. Table 5 shows the impact of using the cycle reconstruction mask and the infinity correction mask on the model
performance. Since multipath effects and infinity holes constitute only a minor percentage of the Gated2Depth test dataset,
we manually created a subset of this dataset containing only multipath and infinity holes. Evaluating on this new dataset helps
illustrating the impact of the masks. The results in Table 5 validate, that the model trained without any mask performs worst.
Adding one mask, already leads to a notable performance boost. However, using all masks together significantly increases
the performance and results in a 14% improved MAE Metric. Table 6 lists further ablation experiments, evaluated on the full
Gated2Depth test dataset. In this Table, we investigate different depth network architectures. Aside from the Resnet18 used
in Monodepth2 [6], we also trained models with a Packnet [10] architecture consisting of four or 8§ 3D-convolutions. The
results show that best performance is obtained with the Packnet architecture consisting of four 3D-convolutions. Further-
more, we found that passive supervision helps to stabilize the training process and models without this loss component often
diverge. Table 6 demonstrates that a lower resolution leads to worse results than models trained with high resolution. Models
trained without temporal loss and cycle loss only suffer from low SNR and saturated regions, which explains the moderate
performance. Combining all loss functions and all proposed masks in the final model leads to a significant improvement in
all metrics, validating the proposed model and loss choices.

‘Method Resolution Depth Net  Pretrained Temporal Loss Cycle Loss Passive Loss Cycle Mask Infinity Mask RMSE ARD MAE  §; o2 d3

Evaluation on a Test Set with predominant Multipath and Infinity Hole Effects

GATED2GATED w/0 masks 512x1024  Packnet(D=4) v v v v X X 9.63 0.19 493 8251 93.06 96.08
Z | GATED2GATED with infinity mask  512x1024  Packnet(D=4) v v v v X v 9.14 0.17 482 8310 93.86 96.60
2 | GATED2GATED with cycle mask 512x1024  Packnet(D=4) v v v v v X 880 0.17 450 8391 94.18 96.82
GATED2GATED (final) 512x1024  Packnet(D=4) v v v v v v 859 015 424 8586 9448 96.85
=~ | GATED2GATED w/0 masks 512x1024  Packnet(D=4) v v v v X X 1092 022 540 8322 91.61 9444
E GATED2GATED with infinity mask  512x1024  Packnet(D=4) v v v v X 4 998 0.18 497 8513 93.58 95.85
Z | GATED2GATED with cycle mask 512x1024  Packnet(D=4) v v v v v X 987 0.18 4.64 85.67 93.54 95.86
GATED2GATED (final) 512x1024  Packnet(D=4) v v v v 4 v 995 017 4.62 8680 93.61 95.68

Table 5. Ablation studies evaluated on a subset of the Gated2Depth test set containing predominant multipath effects and infinity holes. By
applying the proposed infinity correction mask and the cycle reconstruction mask the MAE metric is increased up to 14%.

8.2. Additional Depth-resolved Evaluations

Next, we provide additional information on the depth-resolved evaluation used to assess depth prediction performance in
adverse weather scenarios in Table 2 of the main manuscript. Depth-resolved evaluations were introduced in [7]. In addition,
we also analyze the ground truth LiDAR depth histogram of the STF dataset [1] in Figure 6. Here, the frequency of LiDAR
ground truth points per distance is shown. It can be seen that there is an increase of points in close distance and a stronger
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Figure 6. Distribution of LiDAR points in different adverse weather settings.

decay for further ranges in all weather settings compared to clear conditions. To handle this imbalance, we equally weigh the
evaluation results for 7 m bins in the 3-80 m range. Model performance for distance bins are shown in Figure 7. As the Figure
shows, at longer ranges and in day time conditions, our proposed Gated2Gated approach achieves the best performance. For

Method Resolution Depth Net  Pretrained Temporal Loss Cycle Loss Passive Loss Cycle Mask Infinity Mask RMSE ARD MAE 4, d2 3

Evaluation on the Gated2Depth Test Dataset

BASELINE 512x1024  Packnet(D=4) X v X X X X 1244 027 723 6632 8585 9240
GATED2GATED low res. 256x512  Packnet(D=4) v v v X X X 2034 0.67 15.17 2542 50.34 70.71
GATED2GATED cycle only 512x1024 UNet X X v X X X 1457 038 938 4226 69.77 84.09
GATED2GATED Resnet18 512x1024 Resnet18 v v v v v v 12.12 034 8.10 4943 81.71 9122
GATED2GATED Full Packnet 512x1024  Packnet(D=8) v v v v v v 973 022 513 8130 9197 9532
> | GATED2GATED from scratch 512x1024  Packnet(D=4) X v v v v X 9.23 022 498 80.52 9232 95.62
é GATED2GATED from scratch 512x1024  Packnet(D=4) X v v v v v 10.15 025 560 7726 90.839 9481
GATED2GATED from scratch 512x1024  Packnet(D=4) X v v X v v 5044 270 4744 876 1498 21.80
GATED2GATED w/0 passive 512x1024  Packnet(D=4) v v v X v v 887 0.19 454 8322 9298 95.90
GATED2GATED w/0 masks 512x1024  Packnet(D=4) v v v v X L 929 022 499 80.74 91.88 9540
GATED2GATED with infinity mask  512x1024  Packnet(D=4) v v v v X v 9.14 020 499 80.82 9226 95.58
GATED2GATED with cycle mask 512x1024  Packnet(D=4) v v v v v X 885 020 475 8120 9257 9585
GATED2GATED (final) 512x1024  Packnet(D=4) v v v v v v 846 0.17 437 83.56 93.12 96.09
BASELINE 512x1024  Packnet(D=4) X v X X X X 12.15 027 6.87 69.14 8693 9257
GATED2GATED low res. 256x512  Packnet(D=4) v v v X X X 1698 0.56 1239 31.60 56.80 75.82
GATED2GATED cycle only 512x1024 UNet X X v X X X 17.25  0.61 11.78 36.06 57.20 69.82
GATED2GATED Resnet18 512x1024 Resnet18 v v v v v v 11.80 029 730 57.16 83.24 89.92
GATED2GATED Full Packnet 512x1024  Packnet(D=8) v v v v v v 1031 027 547 80.12 90.56 93.86
E GATED2GATED from scratch 512x1024  Packnet(D=4) X v v v v X 1037 0.28 5.55 7886 90.74 93.99
2| GATED2GATED from scratch 512x1024  Packnet(D=4) X v v v v v 1149 033 623 76.12 89.10 93.00
Z| GATED2GATED from scratch 512x1024  Packnet(D=4) X v v X v v 51.33 289 4827 894 1476 21.87
GATED2GATED w/o passive 512x1024  Packnet(D=4) v v v X v v 997 025 503 8256 9154 9425
GATED2GATED w/0 masks 512x1024  Packnet(D=4) v v v v X X 10.05 027 536 80.06 9044 93.75
GATED2GATED with infinity mask  512x1024  Packnet(D=4) v v v v X v 988 026 545 7887 90.71 94.01
GATED2GATED with cycle mask 512x1024  Packnet(D=4) v v v v v X 958 025 5.03 80.68 91.25 9440
GATED2GATED (final) 512x1024  Packnet(D=4) v v v v v v 943 021 4.86 82.17 91.54 9448

Table 6. Ablation studies evaluated on the Gated2Depth test dataset. We investigate different depth net architectures, loss combinations,
resolutions, and the impact of the presented masks on the network performance. Our final model outperforms all other methods by a
significant margin.



clear light fog | dense fog | snow |
Method RMSE MAE o1 d2 03 RMSE MAE o1 O 83 RMSE MAE 8y 02 O3 RMSE MAE 1 82 03

MONODEPTH RGB [5] 8.12 416 8626 9494 9740 726 332 89.00 9529 97.69 7.5 341 8568 94.09 9671 840 428 8375 93.80 97.10
SPARSE-TO-DENSE [12] 9.14 594 4256 8598 9552 744 541 3161 8020 9555 6.67 498 3144 8049 9483 869 581 40.10 84.65 9589

T PACKNET-SLIMRGB [10] 8.10 407 8455 9449 9734 753 356 8716 9456 9717 596 286 8627 9448 9733 785 403 8382 9465 97.62
.E PACKNET-SLIM G [10] 1147 649 6883 8646 9316 945 483 7794 9030 9494 943 462 7824 9083 9448 1022 578 7214 8867 94.27
= MONODEPTH2RGB [6] 1245 813 4462 7621 9L14 971 642 5028 7994 8998 7.9 545 4811 7612 8586 1146 7.56 4561 77.81 92.06

= MONODEPTH2 G [6] 9.10 428 8567 9256 9515 1007 465 8623 9150 9432 1088 475 8558 9093 9321 805 381 8647 9303 9572
GATED2DEPTH [§] 6.67 330 8736 94438 9694 4.69 239 9075 9673 9841 439 251 8735 9654 98.05 661 339 8505 9410 97.03

»  GATED2GATED 712 362 8722 9489 97.02 489 249 9169 97.00 9848 625 287 89.66 9558 97.02 70l 375 8474 9476 97.11
& MoNoDEPTH RGB [5] 1274 843 7511 9018 9481 1404 910 7270 8843 9432 1467 1064 6349 8290 9189 1317 873 7156 89.06 9481
SPARSE-TO-DENSE [12]  13.66 9.85 5420 8242 9147 1423 1066 4975 79.62 90.10 1850 1535 37.04 6467 7825 1342 981 53.12 8229 92.04

- PACKNET-SLIMRGB[10] 1276 893 7034 8934 9504 1436 9.80 6830 87.85 9451 1174 7.66 7663 90.07 9506 1257 875 69.89 8993 9581

2 PACKNET-SLIM G [10] 1646 1162 5691 7843 8848 1695 11.80 59.09 78.80 88.81 1701 1209 5493 7637 8389 1530 1033 6222 8229 90.65
£ MoNODEPTH2 RGB [6] 1953 1744 27.12 5499 7829 2085 1870 2649 51.68 7273 2271 2135 1971 39.02 58.87 1885 1682 27.87 5684 80.01
MONODEPTH2 G [6] 1326 740 7859 8895 9277 1817 1043 7291 8320 8927 1556 872 7679 8538 90.68 1284 7.2 80.04 8934 93.13
GATED2DEPTH [§] 1148 660 7917 8738 9158 1128 663 8120 8866 9256 1186 7.85 7172 87.10 9170 1128 661 7887 87.93 92.50
GATED2GATED 1L15 631 80.82 9048 9397 1070 601 8471 9152 94.65 1109 686 8109 9143 9447 1097 628 8001 9LI2 9463
MONODEPTH RGB [5] 928 474 8365 9308 9608 922 484 8182 9311 9662 7.35 334 90.60 9545 9754 1069 567 81.03 9164 94.94
SPARSE-TO-DENSE [12]  10.04 679 3508 77.89 9297 976 655 3758 8052 9390 7.61 551 3546 7541 9244 957 633 3827 8118 93.92

E PACKNET-SLIMRGB [10] 9.03 472 8098 9232 9606 928 508 7829 9173 9641 743 348 8604 9255 9588 947 498 7921 9085 9482
£ PACKNET-SLIM G [10] 1069 583 7440 8884 9407 1105 626 7075 8808 9379 868 461 8068 9118 9477 1083 603 7336 8749 92.89
= MONODEPTH2RGB [6]  13.94 9.03 43.84 7148 8497 13.58 882 4420 73.14 8748 1006 690 47.09 70.65 8059 1375 896 4208 7186 86.63

2 MONODEPTH2 G [6] 1005 507 8103 8975 9318 1009 531 80.18 89.10 9325 1058 490 83.15 8892 9311 990 504 8210 89.64 92.79
GATED2DEPTH [§] 6.08 289 89.89 9502 9692 673 3.60 8383 9361 9661 458 258 8855 9587 97.90 689 372 8430 9278 95.70

S GATED2GATED 730 383 8640 9448 9658 727 400 8367 9406 9644 563 309 8863 9614 97.90 820 426 8502 93.11 9551
2 MONODEPTH RGB [5] 1378 892 7263 8848 9337 1330 875 7252 88.88 9445 1631 1099 69.15 8592 9133 1528 089 6883 8686 93.44

SPARSE-TO-DENSE [12] 1443 1040 5032 78.66 89.58 13.92 10.01 51.88 80.41 90.70 16.54 12.07 47.15 7345 8436 14.08 10.05 5291 81.03 90.85
PACKNET-SLIM RGB [10] 13.71 9.60 66.75 8620 92.99 1399 1034 61.44 8463 9392 1478 10.75 6386 82.00 90.28 1437 991 6536 8633 93.37

g PACKNET-SLIM G [10] 1581 11.11 59.80 79.52 88.65 16.01 11.23 5844 80.60 89.57 1749 12.60 57.72 7777 8726 1647 11.40 60.17 79.55 88.62
2 MONODEPTH2 RGB [0] 21.22 1829 29.86 5497 73.65 20.51 17.98 28.89 5401 74.13 2329 20.77 2347 4625 6535 2191 1941 2503 4983 70.66
MONODEPTH2 G [6] 1452 830 7445 8541 89.73 1421 829 7456 8506 91.01 1833 11.88 66.61 7925 8448 1511 846 76.15 86.38 90.52
GATED2DEPTH [&] 1006 517 84.81 90.59 9339 994 537 8195 89.80 9363 1251 7.72 7690 86.59 90.81 10.70 581 81.81 8945 93.02
GATED2GATED 11.69 674 80.25 89.58 92.83 11.29 646 79.39 8931 93.17 13.52 8.69 7643 8670 90.61 1191 6.80 80.76 90.09 93.31

Table 7. Quantitative results of the proposed Gated2Gated framework and state-of-the-art-methods for the Seeing Through Fog [1] dataset.
All metrics are also evaluated for bins of approximately 7m to weight all distances equally.

night time conditions, our method performs on par with Gated2Depth [8]. For completeness, we show the non-binned depth
evaluation scores in Table 7.

Note that, to obtain a clear ground truth in adverse weather, we used the DROR algorithm [2] according to the author’s
specifications. This helped remove cluttered points from the LiDAR point clouds providing noise-free ground truth for
evaluation in challenging adverse weather scenarios. With this approach, we removed about 8.2 % of the LiDAR points.

9. Additional Qualitative Result

Next, we present additional qualitative results of the proposed Gated2Gated method and other state-of-the-art methods.
Depth map predictions of the different approaches, corresponding RGB and gated images as well as the LIDAR measurements
are shown in Figures 8, 9, 10, 11, 12, 13, 14, 15, and 16. These results further validate the improved performance of our
method in capturing structural details of the objects even at far distances. For example, in Figure 8 our method is able to show
distinct object contours for the pedestrians holding hands. Our method is able to distinguish depth of very fine structures in
the scene from background e.g, legs of the person on right side (Figure 8). We find that only Packnet model trained on gated
images is able to achieve results coming close to our method. However, this method often fails estimating the correct depth
values for moving objects (see Figure 12 and 16). The daytime results in Figure 9, 10, 12, 13, 15, and 16. indicate that our
method also works well in the presence of sunlight and is able to handle strong ambient illumination. We have also compared
our proposed method for different weather conditions with Gated2Depth [8] and LiDAR point clouds. Our proposed method
also works well under low light conditions as apparent from Figure 19.

For fog and snow conditions (Figure 20 & 21), our proposed method generates robust depth predictions as compared to
Gated2Depth which fails for thick fog and heavy snow. Interestingly, even unfiltered LiDAR point clouds fail for these ad-
verse weather conditions, whereas our proposed method still generates good qualitative results. This highlights the robustness
of our approach.
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Figure 7. MAE calculated over depth bins of approximately 7 m in different weather conditions. Gated2Gated outperforms all other
methods especially at nighttime and for far distances.
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Figure 8. Qualitative comparison of the proposed Gated2Gated approach and state-of-the-art methods. For each example, we show the
corresponding RGB image, the full gated image and the LIDAR measurements. Gated2Gated predicts finer grain details and sharper object

contours in the depth maps than the other approaches.
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Figure 9. Additional qualitative comparison of our Gated2Gated approach and state-of-the-art methods.
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Figure 10. Additional qualitative comparison of our Gated2Gated approach and state-of-the-art methods.
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Figure 11. Additional qualitative comparison of our Gated2Gated approach and state-of-the-art methods.
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Figure 12. Additional qualitative comparison of our Gated2Gated approach and state-of-the-art methods.
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Figure 13. Additional qualitative comparison of our Gated2Gated approach and state-of-the-art methods.
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Figure 14. Additional qualitative comparison of our Gated2Gated approach and state-of-the-art methods.
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Figure 15. Additional qualitative comparison of our Gated2Gated approach and state-of-the-art methods.
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Figure 16. Additional qualitative comparison of our Gated2Gated approach and state-of-the-art methods.
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Figure 17. Additional qualitative comparison of our Gated2Gated approach and state-of-the-art methods.
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Figure 18. Qualitative comparison of Gated2Gated(G2G) with Gated2Depth [8] (supervised) for Clear Day conditions. It is evident from
these examples that our proposed method is robust to strong ambient light whereas Gated2Depth fails in such scenarios.
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Figure 19. Qualitative comparison for Clear Night conditions. Our proposed method performs better than Gated2Depth even in low-light
conditions, especially mitigating the artefacts for large depths in Gated2Depth.
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Figure 20. Qualitative comparison for Fog conditions. Our proposed method performs robustly in scattering medium for which both
LiDAR and Gated2Depth suffer to the point of failure.
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Figure 21. Qualitative comparison for Snow weather conditions. Note that the proposed method performs better than Gated2Depth [9]
mitigating the artefacts in depth due to scattering by snow.
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