
In this supplementary material, we present additional de-
tails that we have referred to in the main paper.

A. Datasets

ImageNet to Sketch Dataset. Originally introduced in [23]
and referred to as Imagenet to Sketch in [2], our first bench-
mark consists of 5 datasets namely: CUB [47], Cars [15],
WikiArt [41], Flowers [30] and Sketch [7]. Following [24],
Cars and CUB are the cropped datasets, while the rest of the
datasets are as is. For the Flowers dataset, we combine both
the train and validation split as the training data. We resize
all images to 256 and use a random resized crop of size 224
followed by a random horizontal flip. This augmentation is
applied at training time to all the datasets except Cars and
CUB. For these two datasets, we use only the horizontal flip
as the data augmentation during training as in [9, 23, 24].

The Sketch dataset is licensed under a Creative Com-
mons Attribution 4.0 International License. The CUBs,
WikiArt, and Cars datasets use are restricted to non-
commercial research and educational purposes.

Visual Decathlon Challenge. The Visual Decathlon Chal-
lenge [33] aims at evaluating visual recognition algorithms
on images from multiple visual domains. The challenge
consists of 10 datasets: ImageNet [38], Aircraft [22],
CIFAR-100 [16], Describable textures [4], Daimler pedes-
trian classification [28], German traffic signs [43], UCF-
101 Dynamic Images [42], SVHN [29], Omniglot [17], and
Oxford Flowers [30]. The images of the Visual Decathlon
datasets are resized isotropically to have a shorter side of
72 pixels, to alleviate the computational burden for evalua-
tion. Each dataset has a different augmentation for training.
We follow the training protocol as used in [33, 34]. Visual
Decathlon does not explicitly provide a usage license.

DomainNet. DomainNet [31] is a benchmark for multi-
source domain adaptation in object recognition. It contains
0.6M images across six domains (Clipart, Infograph, Paint-
ing, Quickdraw, Real, Sketch). All domains include 345
categories (classes) of objects. Each domain is considered
as a task and we use the official train/test splits in our exper-
iments. We also use the same augmentations as used in [45].
DomainNet is distributed under fair usage as provided for in
section 107 of the US Copyright Law.

B. Detailed Experimental Settings

B.1. Incremental MTL

As mentioned in the main paper, we describe detailed
settings for all the experiments in Sec 4.1. DenseNet-121

Training. We sweep through learning rate of {0.005, 0.01}
and use a similar setup to our ResNet-50 model, i.e. SGD
optimizer with no weight decay. We train for 30 epochs and

use a cosine annealing learning rate scheduler. We used the
same augmentation as that of ResNet-50 model as stated
earlier. To summarize, the learning rate and the network
architecture are the only things that change compared to the
ResNet-50 model training.

ViT-S/16 Training. We train the ViT-S/16 model with a
learning rate of 0.00005, momentum of 0.9, and � = 1. We
train for 30 epochs with batch size of 32 and cosine anneal-
ing learning rate. Data augmentation consists of random
resized crop and horizontal flip.

B.2. Joint MTL

In this section, we describe detailed settings for the Do-
mainNet experiments in Sec 4.2. For each of the meth-
ods, we provide details regarding both joint and incremental
MTL settings.

Fine-tuning. For the joint MTL setting, fine-tuning is done
with the adjustment of batch size and learning rate. The
shared backbone is trained with a batch size of 72 with
12 images from each task, learning rate 0.005, momentum
0.9, and no weight decay. We train for 60 epochs where
an epoch consists of sampling every image across all 6
datasets. We find that balanced sampling over all tasks for
each mini-batch is necessary for stable training as in [45].

For the incremental MTL setting, we train 30 epochs
with batch size 32, learning rate 0.005, momentum 0.9, and
weight decay 0.0001.

AdaShare. The learning process of AdaShare consists of
two phases: the policy learning phase and retraining phase.
During the policy learning phase, both weights and policies
are optimized alternatively for 20K iterations. After the pol-
icy learning phase, different architectures are sampled with
different seeds and the best results are reported. For the
joint MTL setting, we follow the same setting as the origi-
nal implementation [45]. Note that the original implemen-
tation samples 8 architectures from the learned policy and
retrains them and report the best result, here for fair com-
parison with other methods, only 1 sampling is performed.
For the incremental setting, we use the same setting as the
joint-MTL, except the dataset contains only 1 domain.

TAPS. For all experiments we use learning rate 0.005, mo-
mentum 0.9, no weight decay, and � = 1. Data augmen-
tation consists of a random resized crop and horizontal flip.
For both the joint and incremental setting we train with a
batch size of 32 and 30 epochs. The difference being for
the joint variant we report in the main paper we start with
the jointly trained backbone then train with the incremental
variant of TAPS as opposed to an generic model for incre-
mental training. When we use the joint version in which the
backbone is trained simultaneously with the weight deltas,
we train with batch size 72 and sample 12 images per task



for each batch for 60 epochs.

C. Additional Results

C.1. Imagenet to Sketch Benchmark

Amount of Additional Parameters. Tab. 6 shows the per-

Flowers WikiArt Sketch Cars CUB

% Addl. Params.

65.50 52.82 75.87 41.85 70.61

Table 6. Additional parameters for ResNet-50 model on

ImageNet-to-Sketch benchmark. Amount of Additional param-
eters (percentage) for TAPS are shown for the different datasets.

centage of additional parameters needed for each dataset of
this benchmark. In total we use about 4.12⇥ the number of
parameters, with Cars using the least parameters and Sketch
using the most.

Layers active for the Sketch dataset for various �. We
show in Fig. 6, the layers that are active for various values
of � for the Sketch dataset. From this figure, we see that the
first layer is task specific across different values of �. This
shows that the first layer is crucial for fine-tuning. This intu-
itively makes sense as the Sketch dataset has very different
low level statistics compared to ImageNet.

Effect of Pretraining on number of Task specific Param-

eters. Show in Tab. 7 is the number of task specific layers
and parameters that are needed for each dataset. From this
table, we see that for all datasets the number of layers that
are tasks specific are more for Places pretraining compared
to an Imagenet pretraining. One could attribute this to the
fact that the Places model specializes in scenes whereas the
Imagenet model in objects. Hence, the Imagenet model is
”closer” to the tasks as opposed to the Places model.

Layers active for DenseNet-121. Fig. 7 shows the layers
that are active for the DenseNet-121 model. From this fig-
ure we see that the number of layers that are task specific
are much greater compared to the ResNet-50 model. Our
hypothesis is that since DenseNet-121 has more skip con-
nections, changing a layer has an effect on more layers as
compared to ResNet-50.

C.2. Visual Decathalon

In Tab. 8, we show the percentage of task specific layers
as well as parameters for � = 1.0 and � = 0.25. From
this table we see that as � increases, the percentage of task
specific layers and parameters decreases. For the datasets
where there are no task specific layers, the increase in pa-
rameters is due to the storage of batch norm parameters.

We also show the layers where task specific adaptation
is needed for different values of � for the Visual Decathlon

dataset. This can be seen in Fig. 8 (� = 0.25), Fig. 9
(� = 0.5), Fig. 10 (� = 0.75) and Fig. 11 (� = 1.0).
For all the different values of �, we see that almost all
of the layers below layer 9 are not adapted. For the Air-
craft dataset, layer 12 is consistently adapted. Similarly for
the DTD dataset we consistently observe that no layers are
adapted. This shows that some adaptations are independent
of lambda and hence critical for the task.

D. Memory Efficient Joint Variant

See table 9 for comparison between the memory efficient
variant and standard TAPS on the DomainNet benchmark
for joint multi-task learning.

E. Batch Norm and Manual Freezing

In Tab. 10 we report the results of only changing batch
norm parameters and manually freezing layers to match the
parameter cost of TAPS. We find that adaptively modifying
layers outperforms manual freezing.

F. PyTorch Implementation

We show the code snippet of a PyTorch implementation
of TAPS in Algorithm 1 and Algorithm 2. The Adaptive-
Conv conv layers can be used to replace the normal Conv2d
layers in an existing model. This shows how easily existing
architectures can be used for training TAPS.



Figure 6. When do we use task specific weights?. The plot shows the different task specific layers for the a model trained on the Sketch
dataset. Each row represents the value of � for which the network uses task specific weights. Blue boxes indicate task specific layers while
yellow boxes indicate base model layers. From this figure we can see that the lowest layers are active for any value of �. Most other lower
layers are turned off when � > 0

Flowers WikiArt Sketch Cars CUB
Resnet - 50
% Addl. Parameters
Imagenet 65.50 52.82 75.87 41.85 70.61
Places 75.08 68.72 74.59 75.02 74.72
% Task Specific Layers
Imagenet 22.64 20.75 43.40 14.47 28.30
Places 35.85 28.30 50.94 33.96 33.96

Table 7. Effect of Pretrained Model on Task specific parameters. Amount of parameters that are additionally needed for each task. The
comparison between Imagenet pretrained model and Places pretrained model is shown. Across the board we see that the Places pretrained
model uses more parameters as well as layers.

Method Airc. C100 DPed DTD GTSR Flwr. Oglt. SVHN UCF Mean. S-Score

TAPS(�=1.0) 63.43 81.04 96.99 58.19 98.38 84.08 89.16 94.99 51.10 77.77 3088
% Addl. Parameters 32.95 30.43 0.13 20.38 0.13 20.33 47.45 20.41 40.53
% Task specifc layer 16.00 12.00 0.00 8.00 0.00 8.00 20.00 8.00 16.00

TAPS( (�=0.25) 66.58 81.76 97.07 58.83 99.07 86.99 88.79 95.72 51.92 78.703 3532
% Addl. Parameters 80.92 60.73 0.13 53.28 20.38 40.53 66.38 40.69 60.72
% Task specific layer 44.00 24.00 0.00 24.00 8.00 16.00 28.00 16.00 24.00

Table 8. Visual Decathalon additional parameter count. Shown in this table is the percentage of task specific layers as well as parameters
needed for each task in addition to the base model. We show this for � = 1.0 and � = 0.25

Method Params Real Painting Quickdraw Clipart Infograph Sketch Mean
TAPS (Standard) 1.43⇥ 78.45 68.23 70.32 77.00 39.35 67.95 66.88

TAPS (Mem. Efficient) 1.46⇥ 78.91 67.91 70.18 76.98 39.30 67.81 66.84

Table 9. Comparison between the memory efficient and standard version of TAPS on DomainNet in the joint MTL setting. The
memory efficient version performs comparably in accuracy and parameter cost while only needing constant memory during training.



Figure 7. Shared layers for different tasks. The figure shows
the task specific layers that are active for different datasets using a
DenseNet-121 model. We observe that compared to the ResNet-50
model, many more layers are active for the same dataset.

Figure 8. Task specific layers for different tasks. The figure
shows the task specific layers that are adapted for different datasets
in the Visual Decathlon challenge for � = 0.25

Figure 9. Task specific layers for different tasks. The figure
shows the task specific layers that are adapted for different datasets
in the Visual Decathlon challenge for � = 0.50

Figure 10. Task specific layers for different tasks. The figure
shows the task specific layers that are adapted for different datasets
in the Visual Decathlon challenge for � = 0.75

Figure 11. Task specific layers for different tasks. The figure
shows the task specific layers that are adapted for different datasets
in the Visual Decathlon challenge for � = 1.0



Algorithm 1 Pytorch Code for Gating Function with Straight Through Estimator

class BinarizeIndictator(autograd.Function):
@staticmethod
def forward(ctx, indicator, threshold=0.1):

out = (indicator >= threshold).float()
return out

@staticmethod
def backward(ctx, g):

# send the gradient g straight-through on the backward pass.
return g, None

Algorithm 2 Pytorch Code for Incremental Version of Task-Adaptive Convolutional Layers

class AdaptiveConv(nn.Conv2d):
def __init__(self, *args, **kwargs):

super().__init__(initial_val, *args, **kwargs)
weight_shape = self.weight.shape
#Initialize residual weights and indicator scores.
self.residual = torch.nn.Parameter(torch.zeros(weight_shape))
self.indicator = torch.nn.Parameter(torch.ones([initial_val])
#Freeze base network weights
self.weight.requires_grad = False
self.weight.grad = None

def forward(self, x):
I = BinarizeIndictator.apply(self.indicator)
w = self.weight + I * self.residual
x = F.conv2d(x, w)
return x

Param Flowers WikiArt Sketch Cars CUB

Feat. Extractor 1⇥ 89.14 61.74 65.90 55.52 63.46
BN 1.01⇥ 91.07 70.06 78.47 79.41 76.25
Man. Freeze 4.15⇥ 92.35 73.32 78.68 87.62 81.01
TAPS 4.12⇥ 96.68 76.94 80.74 89.76 82.65

Table 10. Performance of various method using a ResNet-50 model on ImageNet-to-Sketch benchmark.


