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Figure 1. The normalizing flow consists of multiple consecutive coupling blocks. Each block performs a random permutation of the input
vector and splits it into two parts. The upper part is used to predict an element-wise scale and a translation which deform the lower part.
After deformation the upper part is concatenated with the transformed lower part.

1. Normalizing Flow Architecture
Informally, a normalizing flow is a tool to efficiently map

distributions back and forth between two spaces. It applies
to density estimation and also serves well as a generative
model.

Let Z ∈ RN be a known distribution (in our case a nor-
mal distribution) and g be an invertible function g(z) = x,
with x ∈ RN as a vector representing the joints of a human
pose1. With the change of variables formula the probability
density function of x is computed as

pX (x) = pZ(f(x))
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where f is the inverse of g and ∂f
∂x is the Jacobian of f .

That means given an invertible function f the density of a
2D pose x can be calculated by the product of the density
of its projection f(x) with the respective Jacobian determi-
nant. In our case f is the trainable neural network proposed
in [1]. It consists of multiple consecutive affine coupling
blocks. As shown in Fig. 1 each coupling block splits the
input vector into two parts, u1 and u2. In the forward pass,

1In our case, this is either the 2D pose vector x or its image in the PCA
subspace.

a scale s and a translation t is computed from u1 and applied
to u2 such that

v2 = exp(s(u1))u2 + t(u1) and v1 = u1. (2)

The backward path is defined by

u1 = v1 and u2 = (v2 − t(v1)) exp(−s(v1)). (3)

The benefit of this formulation is the tractable computation
of the determinant det(∂f∂x ). The Jacobian is given by
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where diag(·) is a diagonal matrix. Since we are only inter-
ested in the determinant of the Jacobian, it simplifies to
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Note that the Jacobian of f does not require computing the
Jacobian of s and t. That means s and t can be arbitrar-
ily complex. Since u1 remains unchanged in one coupling
layer, the input vector to each coupling layer is randomly
permuted.
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