
A. Overview

This document provides technical details, additional
quantitative results, and more qualitative test examples to
the main paper. In Sect. B we provide derivations about the
gradients back-propagated on three rotation angles and il-
lustrate the construction of rotation matrices. In Sect. C we
show more implementation details on our network architec-
tures and training parameters. Then Sect. D illustrates com-
parison experiments between different optimization skills,
while Sect. E shows more analysis experiments on our at-
tack algorithm. At last, we show some visualization results
in Sect. F.

B. Gradient Derivation and Rotation matrix
Construction (Sect. 3.3)

Gradient Derivation. As illustrated in the main paper,
rotating points along z axis by δ will increase the loss L by
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δ, where ∂L
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can be calculated by the chain rule as:
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Here, ϕz refers to the rotation angle around z axis, which is
the same as the azimuthal angle ϕ in the following spherical
coordinate system (r, θ, ϕ):

x = r cosϕ sin θ,

y = r sinϕ sin θ,

z = r cos θ.

(2)

Then, based on Eq. (2), we can write Eq. (1) as follows:
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Similarly, for the remaining rotation axes ϕx and ϕy , we

can calculate the gradients simply by rolling the coordinate
system in Eq. (3) as follows:
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Rotation Matrix Construction. Given the optimized
rotation angle Φ = [ϕx, ϕy, ϕz], we construct the corre-
sponding rotation matrices as follows:

Rϕx
=

 1 0 0
0 cosϕx − sinϕx

0 sinϕx cosϕx

 , (5)

Rϕy
=

 cosϕy 0 sinϕy

0 1 0
− sinϕy 0 cosϕy

 , (6)

Rϕz =

 cosϕz − sinϕz 0
sinϕz cosϕz 0
0 0 1

 . (7)

Based on above equations, we compute the final rotation
matrix R = Rϕz

·Rϕy
·Rϕx

, where “·” refers to the matrix
multiplication.

C. Implementation Details
We implement ART-Point using PyTorch [1]. In detail,

during attack, we set the step size of angle gradient descent
α = 0.01, a batch size B = 17 and adopt ten steps de-
scent to obtain the adversarial rotation. During defense, we
mainly use SGD to train existing point cloud classifiers fol-
lowing the same optimizer and learning rate schedules as
used in their papers. We experiment with two optimization
methods: iterative optimization and one-step optimization.

For the iterative optimization, we alternate the min-max
process until the model converges. Specifically, to train a
robust PointNet, in each iteration we use 10 epochs gra-
dient descent on angles for maximization to find the most
aggressive rotation angles and 50 epochs for minimization
to train on adversarial datasets. We perform 10 iterations in
total to obtain the final robust model.

For the one-step optimization, we construct the rotation
pool by attacking multiple classifiers and reach the robust
model in a single min-max iteration. Concretely, suppose
that our target model is the PointNet classifier [2]. We not
only attack PointNet but attack more robust classifiers such
as PointNet++ [3] and DGCNN [4] to construct the rotation
pool. We use 10 epochs gradient descent for maximization
to find adversarial samples and 200 epochs for minimization
to train on adversarial samples.

D. Comparison of Different Optimizations
We compare the training progress of the naive iterative

optimization with the proposed one-step optimization. The
experiments are conducted under ModelNet40 [5] and re-
sulting classifiers are tested under randomly rotated datasets
for evaluating the rotation robustness. We record the perfor-
mance of three classifiers in each iteration and compare the
final results with classifiers trained via the one-step method.



Figure 1. Adversarial training results of three classifiers under
ModelNet40 [5] with different optimizations.

Descent s = 9 s = 10 s = 11 s = 12
Steps 83.9 84.3 84.3 84.2
Rotation [− 1

4π,
1
4π] [− 1

2π,
1
2π] [− 3

4π,
3
4π] [−π, π]

Angles 87.2 86.4 85.5 84.3

Table 1. Adversarial training results under different settings.

Specifically, we follow the detailed implementations for
both optimizations in Sect. C to reach robust models. It
can be seen from Fig. (1) that for the iterative optimiza-
tion it usually takes 8-10 iterations to reach the most robust
model. In contrast, the one-step method obtains the robust
model with competitive performance in one iteration. Note
that, for different classifiers in one-step optimizations, the
rotating pools are all constructed by attacking three models,
i.e. PointNet [2], PointNet++ [3] and DGCNN [4].

E. More Ablation Studies
Here, we provide more control experiments to verify our

rotation attack algorithm. We mainly conduct studies based
on ModelNet40 [5] with PointNet classifiers [2].

Attack Step Size. We further illustrate experiments to
select the appropriate step size in angle attacks. The re-
sults are shown in Tab. (2), where we record the aver-
age loss value of attacked samples under different step size
α (rad). Our attack algorithm finds the most aggressive at-
tacked samples that induce the highest loss with α = 0.01.

Descent Steps and Rotation Angles. Finally, we verify
the effect of different hyper-parameters on adversarial train-
ing. We adopt different descent steps during attacking and
we also study the performance of our method under limited
rotation ranges. The final results are shown in Tab. (1).

The adversarial training results tend to be saturated when
the gradient descent step is large than 10, so we set the

α = 0.1 α = 0.08 α = 0.06 α = 0.04 α = 0.02
5.3 7.4 9.5 8.9 11.3

α = 0.01 α = 0.008 α = 0.006 α = 0.004 α = 0.002
13.5 12.4 11.7 10.2 9.5

Table 2. Averaged loss values of attacked samples produced by
attacks with different step sizes.

attack algorithm with 10 steps descent by defaults. Our
method obtains better results under smaller rotation ranges,
which demonstrates that by specifying the range of rotation
angles, ART-Point can further increase the model robust-
ness.

F. Visualization
Finally, we compare the classification loss of different

models under the the randomly rotated test set of Model-
Net40 [5] (Fig. 2) and ShapeNet16 [6] (Fig. 3). We illus-
trate the corresponding loss value under each rotated sam-
ple and compare them between the original DGCNN [4] and
our best model ART-DGCNN. As can be seen, our method
generally shows lower classification loss under both ran-
domly rotated datasets.
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Figure 2. In every two rows, we compare the classification loss of DGCNN [4] (top row) and ART-DGCNN (bottom row) on the same
arbitrarily rotated point clouds, which are randomly sampled from test sets of ModelNet40 [5]. From top to bottom, the categories of point
clouds are “table”, “desk” and “car”.
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Figure 3. In every two rows, we compare the classification loss of DGCNN [4] (top row) and ART-DGCNN (bottom row) on the same
arbitrarily rotated point clouds, which are randomly sampled from test sets of ShapeNet16 [6]. From top to bottom, the categories of point
clouds are “bag”, “cap” and “mug”.
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