### Blind2Unblind: Self-Supervised Image Denoising with Visible Blind Spots

Zejin Wang<sup>1,2</sup> Jiazheng Liu<sup>1,3</sup> Guoqing Li<sup>1</sup> Hua Han<sup>1,3,\*</sup>

<sup>1</sup>National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences

<sup>2</sup>School of Artificial Intelligence, University of Chinese Academy of Sciences

<sup>3</sup>School of Future Technology, University of Chinese Academy of Sciences

## A. Training Framework for Blind2Unblind

The training framework for Blind2Unblind is shown in Algorithm 1.

| Algorithm 1: Blind2Unblind                                                                                                                      |
|-------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Input:</b> A set of noisy images $Y = {\mathbf{y}_i}_{i=1}^n$ ;                                                                              |
| Denoising network $f_{\theta}(\cdot)$ ;                                                                                                         |
| Hyper-parameters $\eta, \lambda$ ;                                                                                                              |
| while not converged do                                                                                                                          |
| Sample a noisy image y;                                                                                                                         |
| Generate a global masker $\mathbf{\Omega}_{(\cdot)}$ ;                                                                                          |
| Derive a masked volume $\Omega_y$ , where $\Omega_y$ is the                                                                                     |
| network input, and y is the network target;                                                                                                     |
| For the network input $\Omega_y$ , derive the denoised                                                                                          |
| volume $f_{\theta}(\mathbf{\Omega}_{\mathbf{y}})$ ;                                                                                             |
| Global mask mapper $h_{(.)}$ samples the denoised                                                                                               |
| volume $f_{\theta}(\mathbf{\Omega}_{\mathbf{y}})$ at blind spots, then obtain a                                                                 |
| blind denoised image $h(f_{\theta}(\mathbf{\Omega}_{\mathbf{y}}));$                                                                             |
| For the original noisy image y, derive the visible                                                                                              |
| denoised image $\hat{f}_{\theta}(\mathbf{y})$ without gradients;                                                                                |
| Calculate re-visible loss                                                                                                                       |
| $\mathcal{L}_{rev} = \ h(f_{\theta}(\mathbf{\Omega}_{\mathbf{y}})) + \lambda \hat{f}_{\theta}(\mathbf{y}) - (\lambda + 1)\mathbf{y}\ _{2}^{2};$ |
| Calculate regularization                                                                                                                        |
| $\mathcal{L}_{reg} = \ h(f_{\theta}(\mathbf{\Omega}_{\mathbf{v}})) - \mathbf{y}\ _{2}^{2};$                                                     |
| Update network parameters $\theta$ by minimizing the                                                                                            |
| regularized re-visible loss $\mathcal{L}_{rev} + \eta \cdot \mathcal{L}_{reg}$ ;                                                                |
| end                                                                                                                                             |

# **B.** Details of Interpolation from Neighbors

Figure 1 shows the workflow of interpolation from neighbors. The workflow can be divided into the following three steps: 1) The mask is generated by random masking each  $2 \times 2$  cells in image y. The kernel convolves image y with stride 1 and padding 1 to produce  $y_c$ . Then,  $y_m$  is obtained via Hadamard product  $y_c \circ mask$ . 2) We perform Hadamard product  $y \circ (1 - mask)$  to generate  $y_{inv}$ . 3) Sum by  $y_m$  and  $y_{inv}$ , we finally obtain the masked image  $\Omega_y$ .



### C. Details of Random Mask Strategy

The illustration of the random mask strategy is presented in Figure 2. The image y is divided into several blocks with 2x2 cells. A specific pixel in each cell is randomly set as a blind spot. Namely, there are four ways for random masking of 2x2 cells. After random masking, the masked image  $\Omega_y$ is fed into the denoising network to generate the denoised image  $f_{\theta}(\Omega_y)$ .



### **D.** More Experimental Results

Figure 3 illustrates the steps of our proposed method while denoising sRGB images in the setting of  $\sigma = 25$ . Figure 4 shows the visual comparison of denoising raw-RGB images in the challenging SIDD benchmark.

<sup>\*</sup>Corresponding author



Figure 3. The steps of our proposed method while denoising sRGB images in the setting of  $\sigma = 25$ . Blind denotes  $\hat{f}_{\theta}(\mathbf{y})$ , and Weighted denotes  $\frac{h(f^*_{\theta}(\Omega_{\mathbf{y}})) + \lambda \hat{f}^*_{\theta}(\mathbf{y})}{\lambda + 1}$ .



Figure 4. Visual comparison of denoising raw-RGB images in the challenging SIDD benchmark.