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A. Training Framework for Blind2Unblind
The training framework for Blind2Unblind is shown

in Algorithm 1.

Algorithm 1: Blind2Unblind
Input: A set of noisy images Y = {yi}ni=1;

Denoising network fθ(·);
Hyper-parameters η, λ;

while not converged do
Sample a noisy image y;
Generate a global masker Ω(·);
Derive a masked volume Ωy, where Ωy is the
network input, and y is the network target;

For the network input Ωy, derive the denoised
volume fθ(Ωy);

Global mask mapper h(·) samples the denoised
volume fθ(Ωy) at blind spots, then obtain a
blind denoised image h(fθ(Ωy));

For the original noisy image y, derive the visible
denoised image f̂θ(y) without gradients;

Calculate re-visible loss
Lrev = ∥h(fθ(Ωy)) + λf̂θ(y)− (λ+ 1)y∥22;

Calculate regularization
Lreg = ∥h(fθ(Ωy))− y∥22;

Update network parameters θ by minimizing the
regularized re-visible loss Lrev + η · Lreg;

end

B. Details of Interpolation from Neighbors
Figure 1 shows the workflow of interpolation from

neighbors. The workflow can be divided into the following
three steps: 1) The mask is generated by random masking
each 2 × 2 cells in image y. The kernel convolves image
y with stride 1 and padding 1 to produce yc. Then, ym is
obtained via Hadamard product yc ◦mask. 2) We perform
Hadamard product y ◦ (1 − mask) to gernerate yinv . 3)
Sum by ym and yinv , we finally obtain the masked image
Ωy.
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Figure 1. Details of interpolation from neighbors.

C. Details of Random Mask Strategy
The illustration of the random mask strategy is presented

in Figure 2. The image y is divided into several blocks with
2x2 cells. A specific pixel in each cell is randomly set as a
blind spot. Namely, there are four ways for random masking
of 2x2 cells. After random masking, the masked image Ωy

is fed into the denoising network to generate the denoised
image fθ(Ωy).
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Figure 2. Details of random mask strategy.

D. More Experimental Results
Figure 3 illustrates the steps of our proposed method

while denoising sRGB images in the setting of σ = 25. Fig-
ure 4 shows the visual comparison of denoising raw-RGB
images in the challenging SIDD benchmark.
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Figure 3. The steps of our proposed method while denoising sRGB images in the setting of σ = 25. Blind denotes h(fθ(Ωy)), Visible

denotes f̂θ(y), and Weighted denotes h(f∗
θ (Ωy))+λf̂∗

θ (y)

λ+1
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Figure 4. Visual comparison of denoising raw-RGB images in the challenging SIDD benchmark.


