
7. Supplementary materials

7.1. Additional Images for Different Attacks

In this section, we show more Trojan samples generated

by WaNet [7] and our BPPATTACK. The images can be

found in Fig. 1, where the first row is the original images,

and the second and the third row are the Trojan samples

generated by WaNet and BPPATTACK, respectively. As can

be observed, the Trojan samples generated by WaNet can

be spotted, and BPPATTACK is more stealthy.

7.2. Additional Images for Different Bits Numbers

To illustrate the effects of different bit numbers, in this

section, we demonstrate more samples generated by differ-

ent bits numbers. The results are shown in Fig. 2. It shows

that the Trojan samples produced by BPPATTACK with dif-

ferent bits numbers are natural and stealthy.

7.3. Details of MNIST Classifier

The detailed architecture of the classifier used for

MNIST dataset is shown in Table 1.

Layer Type # of Channels Filter Size Stride Padding Activation

Conv* 32 3x3 2 1 ReLU

Conv* 64 3x3 2 0 ReLU

Conv 64 3x3 2 0 ReLU

FC† 512 - - 0 ReLU

FC 10 - - 0 Softmax

Table 1. Details of classifier used for MNIST. FC stands for fully-

connected layer. * denotes the layer is followed by a BatchNor-

malization layer. †denotes the layer is followed by a DropOut

layer.

7.4. Resistance to More Defenses

Spectral Signature [8]. Spectral Signature [8] is a defense

method that identifies and removes Trojans during training.

Although it is a training time defense and does not match

our threat model, investigating if the Trojan samples gen-

erated by BPPATTACK can be detected by it is still helpful.

Given a set of benign and Trojan samples, Spectral Signa-

ture first collects the latent features and computes the top

singular value of the covariance matrix. Then, for each sam-

ple, it calculates the correlation score between its features

and the top singular value that is used as the outlier scores.

Finally, it removes the samples with high outlier scores. We

use 900 benign samples and 100 Trojan samples in CIFAR-

10 to evaluate if our attack can bypass Spectral Signature.

The results are demonstrated in Fig. 3. It shows that we can

fool the detector and bypass the detection.

Fig. 3. Resilient to Spectral Signature.

Universal Litmus Patterns [4]. ULP [4] is designed to

detect if a model is Trojan or not. It first trains universal

patterns from a large number of benign and Trojan models.

These patterns are optimized input images. We train the pat-

terns from 500 clean VGG models and 500 poisoned VGG

models provided in its official GitHub repository. Then, we

attack five different VGG models on CIFAR-10, and they all

can bypass ULP. ULP assumes the trigger is a small patch,

while our trigger is not a patch.

Neural Attention Distillation [5]. NAD [5] is a Trojan

removing method. It first obtains a teacher model by fine-

tuning on a set of clean samples. Then, NAD uses the ob-

tained teacher model to guide the distillation of the Trojan

student model to make the intermediate-layer attention of

the student model align with that of the teacher model. To

evaluate if our method is resilient to NAD, we conduct ex-

periments on three datasets (i.e., CIFAR-10, GTSRB, and

CelebA). For CIFAR10 and GTSRB, we use Pre-activation

ResNet18. For CelebA, we use ResNet18. For the imple-

mentation of NAD, we use the official code and default

hyperparameters specified in the original paper. In detail,

we assume the defender can access 5% of clean training

data. The initial learning rate is 0.1, and the learning rate

is divided by ten after every two epochs. The data aug-

mentations used are random crop, horizontal flipping, and

Cutout [2]. The results are demonstrated in Table 2. For

CIFAR-10 and GTSRB, although the ASRs for defended

models are low, however, the BAs decrease dramatically

after NAD defense. For CelebA, the defended model still

achieves 47.89% ASR with the BA drop from 79.06% to

67.52%. The results show that our attack is resilient to

NAD.

Dataset
No defense NAD

BA ASR BA ASR

CIFAR-10 94.54% 99.91% 39.14% 12.07%

GTSRB 99.25% 99.96% 14.21% 2.15%

CelebA 79.06% 99.99% 67.52% 47.89%

Table 2. Resilient to Neural Attention Distillation
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Fig. 1. Additional images for comparison between WaNet and our method.
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Fig. 2. Additional images to demonstrate the influence of different bits numbers.

7.5. Compared with ISSBA [6]

ISSBA [6] is a representative auxiliary models based at-

tacks. It first trains an auto-encoder as a Trojan transforma-

tion function and then uses it to inject Trojans into victim

models. Following ISSBA [6], we run our method on a 200

classes subset of ImageNet (specified in Li et al. [6]) and

ResNet18 model, and compare our method to it. The re-

sults are shown in Table 3, where ET means the extra time

cost for training the victim model. Our attack is more ef-

ficient with comparable or better ASR and BA, compared

with ISSBA. The computational and time overhead of our

method is much smaller than that of generator/auto-encoder

based attacks [1, 3, 6]. In detail, the training time of our

method is only 19.04% longer than that of standard train-

ing. For ImageNet’s 200 classes subset, ISSBA [6] takes

7h30mins to train the encoder-decoder. However, the extra

training time for our method is only 1h18mins on the same

dataset. For stealthiness, it is clear that the example of our

attack is more close to the original image, while the exam-

ple of ISSBA has some unnatural “black fog”. (See Fig.1 in

main paper.)

Dataset
Non-attack ISSBA BppAttack

BA BA ASR ET BA ASR ET

ImageNet 85.83% 85.51% 99.54% 450m 85.76% 99.78% 78m

Table 3. Effectiveness on ImageNet



7.6. Compared with WaNet [7]

Our method and WaNet [7] have different training proto-

cols. Besides the comparison under different training pro-

tocols, we also compare BPPATTACK and WaNet under

our protocol to further investigate the effectiveness of our

proposed quantization triggers. We compare our method

and WaNet under our training protocol on CIFAR-10 and

GTSRB. The model used is Pre-activation ResNet18 and

ResNet18, respectively. The results are demonstrated in Ta-

ble 4. Results show that both BA and ASR of our trigger

are higher than that of WaNet, showing that the purposed

quantization trigger is better than WaNet’s trigger.

Dataset
WaNet BppAttack

BA ASR BA ASR

CIFAR-10 94.06% 99.35% 94.54% 99.91%

GTSRB 98.45% 98.52% 99.25% 99.96%

Table 4. Comparisons to WaNet using our training protocol

7.7. Robustness against finetuning

Besides the threat model that assumes the victim users

directly deploy the malicious models, here we also consider

a transfer learning scenario where the downstream users

fine-tune the Trojan model weights with out-of-distribution

data. In some cases, the downstream users even fine-tune

the model with different quality of images, and some may

incorporate similar quantization techniques to the proposed

attack, e.g., JPEG. Note that injecting Trojans that are ro-

bust against fine-tuning is orthogonal to our paper and has

been studied by another line of work [9]. Such approaches

can be adopted by us. By combining with Yao et al. [9],

our attack on CIFAR-10 and ResNet18 can achieve 86.52%

ASR after fine-tuning on 5000 JPEG compressed samples.

7.8. Discussion: Trojan Triggers

Traditional Trojan attacks use fixed patterns/noise as

Trojan triggers. Let x̃ be the Trojan sample and x be the

corresponding clean sample. These attacks can be formal-

ized as x̃ = m ⊙ t + (1 − m) ⊙ x (where m and t are

predefined Trojan trigger mask and pattern) or x̃ = x + δ

(where δ is the fixed noise). However, the Trojan triggers

are not necessarily a fixed pattern. Instead, it can be a uni-

versal input activity (e.g., quantization, auto-encoder, GAN,

or other input transformations), and it can be formalized as

x̃ = T (x). The traditional trigger that requires a fixed pat-

tern is actually a special case of the activity function T (x).
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