
Supplementary Material

A. Proofs

A.1 Proof for Proposition 1

Proposition 1. We derive the new contrastive loss function
for regression task as

− log

∑
k S[p(gi); p(gk)] · fk(yk, x)∑

j fj(yj , x)
(S-1)

where fi(yi, x) is the density ratio.

Proof. Following InfoNCE [10], we define p(y|x)
p(y) as the

density ratio, where p(y|x) is the predict distribution that
we want, while p(y) is the noise distribution used for con-
trast. Considering N as the batch size, the probability of
finding the positive sample p(yi|x) as:

p (yi|x)
∏
l 6=i p (yl)∑N

j=1 p (yj |x)
∏
l 6=j p (yl)

=

p(yi|x)
p(yi)∑N

j=1
p(yj |x)
p(yj)

(S-2)

According to fi(yi, x) ∝ p(yi|x)
p(yi)

[10], we have the predict
distribution as

p(yi|x) =
fi(yi, x)∑
j fj(yj , x)

(S-3)

For regression model, different from classification tasks, the
relationship between labels reveal the relationship between
the features. Then we can make a assumption that the ratio
between predict distribution p(yi|x) and p(yk|x) is propor-
tional to the similarity between label distribution p(gi) and
p(gj). Then we have

p(yi|x)
p(yk|x)

=
fi(yi, x)

fk(yk, x)
= C · S[p(gi); p(gk)] (S-4)

In other words, fi(yi, x) = C · S[p(gi); p(gk)] · fk(yk, x).
Considering other samples, we have N similar expressions.
We take the sum we get the predict distribution as:

p(yi|x) =
C
N

∑
k S[p(gi); p(gk)] · fk(yk, x)∑

j fj(yj , x)
(S-5)

Following the MLE loss function, we have the derived new
loss function as Contrastive Regression loss (CR loss):

L = − log
C
N

∑
k S[p(gi); p(gk)] · fk(yk, x)∑

j fj(yj , x)

= − log

∑
k S[p(gi); p(gk)] · fk(yk, x)∑

j fj(yj , x)
− log

C

N

(S-6)

As the last term in Eq. S-6 is a constant and can be omitted:

− log

∑
k S[p(gi); p(gk)] · fk(yk, x)∑

j fj(yj , x)
(S-7)

A.2 Proof for Proposition 2

Proposition 2. The two forms of loss function L1 =

− log
∑

k Si,k·fk(yk,x)∑
j fj(yj ,x)

and L2 = − log
∑

k σ(Si,k)·fk(yk,x)∑
j |Si,k|·fj(yj ,x)

have the same effect, i.e., they pull features with closer gaze
directions closer together while pushing features with far-
ther gaze directions farther apart.

Proof. Considering that the log(·) function is monotoni-
cally increasing, we consider the gradient for the inner func-
tion. For I1 =

∑
k Si,k·fk(yk,x)∑

j fj(yj ,x)
, we have the gradient for

fm(ym, x) is

∂I1
∂fm

=
Si,m ·

∑
j fj(yj , x)−

∑
k Si,k · fk(yk, x)

[
∑
j fj(yj , x)]

2

=

∑
k(Si,m − Si,k) · fk(yk, x)

[
∑
j fj(yj , x)]

2

(S-8)

Considering that fk(yk, x) ≥ 0 always holds, then Si,m −
Si,k determines the direction of the gradient. If Si,m is
larger than Si,k, then we need to enlarge fm(ym, x) to max-
imize the inner function I1, equivalent to minimize the L1

loss, while Si,m is smaller than Si,k, we need to reduce
fm(ym, x). This indicates that we will pull features with
closer labels closer together while push features with fur-
ther labels further apart.
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Figure S-1. Visual examples of estimated 3d gaze result. Arrows represent the projection of the 3d unit gaze vector on the image plane.
Red arrow represent the ground-truth gaze vector, green arrow represent the predictions of CRGA and blue arrow represent the predictions
of baseline model.

For I2 =
∑

k σ(Si,k)·fk(yk,x)∑
j |Si,j |·fj(yj ,x)

, where σ is the relu func-

tion. We have the gradient for fm(ym, x) is

∂I2
∂fm

=
σ(Si,m)

∑
j |Si,j | fj −

∑
k σ(Si,k)fk |Si,m|

[
∑
j |Si,j | · fj ]2

=

∑
j [σ(Si,m) · |Si,j | − σ(Si,j) · |Si,m|] · fj

[
∑
j |Si,j | · fj ]2

(S-9)
Then σ(Si,m) · |Si,j | − σ(Si,j) · |Si,m| determines the di-
rection of the gradient. As we elaborated below in Sec.A.3,
we take Si,j ≥ 0 as the close pairs (the assumed constant
variance 0.07 is small and ensures few positive pairs). Then
we consider the scene where Si,j and Si,m with opposite
symbols. Then if Si,m ≥ 0, then σ(Si,m) · |Si,j | − σ(Si,j) ·
|Si,m| ≥ 0 and will ↗ as Si,m ↗ While |Si,j | − σ(Si,j) ·
|Si,m| ≤ 0 and will ↘ as Si,m ↗ when Si,m ≤ 0. This
also indicates that we will pull features with closer labels
closer together while push features with further labels fur-
ther apart.

A.3 Similarity Function

As we can see from the gaze direction distribution in
Fig.3, the gaze direction is mainly concentrated in front of
face and most of the datasets are concentrated with less dif-
ference in gaze directions. This means we need to distin-
guish subtle differences between gaze directions.

If we choose cosine similarity as the similarity function
Si,j between label distribution p(gi) and p(gj), the low gra-
dient near zero will exacerbate the difficulty in distinguish-
ing gaze directions. Thus we propose to use the negative
log KL divergence to model the difference between label
distribution.

Following [8], We assume that the density follows the
Laplace distribution with a constant variance as g ∼
La(g;µ, δ). For this constant variance, we take δ = 0.07.
Here, 0.07 ≈ 4◦/180◦ ·π, where 4◦ is our assumed standard
estimation for personal error between visual axis and optical
axis. Then the Kl divergence between p(gi) = La(µi, δi)
and p(gj) = La(µj , δj) is

DKL[p(gi)||p(gj)] = |µi − µj | (S-10)

Because kl divergence tends to zero when the two distribu-
tions are similar, which is the opposite of our goal, we take
negative kl. To further encourage the difference near zero,
we take the log function and get

Si,j = − log |µi − µj | (S-11)

Then, when |µi − µj | ≤ 1, we will pull together two gaze
features. However, this means gaze direction error as 1/pi ·
180 ≈ 57◦. This is not reasonable, thus we introduce the
comparison with our assumed assumed standard estimation
for personal error 4◦. Considering that the gaze direction



Figure S-2. Scatter plot of predictions and ground-truth labels before and after our CRGA on source domain DE . Scatter points in blue
represent baseline predictions, red ones represent ground-truth labels, and green ones represent predictions of our CRGA.

is mainly concentrated in front of the face and the gradient
near zero of cosine similarity is too small, we derive a -log
KL function as the similarity:

Si,j = − log
|µi − µj |
0.07

= log
0.07

|µi − µj |
(S-12)

Here, µ is the gaze label obtained from the collection.

B. Datasets
ETH-XGAZE [11] is collected with 18 digital SLR

cameras from 110 participants in laboratory environments,
which contains large variations in head poses, gaze direc-
tion, personal feature and illumination condition. It pro-
vides 80 subjects (i.e.,756,540 images) as the training set.

Gaze360 [6] is collected in both indoor and outdoor envi-
ronments, which contains labelled 3D gaze of 238 subjects
with a wide-range head pose and gaze direction. Follow-
ing [2, 9], we remove images without subjects’ faces but
use the remaining 84,902 images as the training set (dif-
ferent from [2, 9], 16,031 test images are not used as the
training set for more fair training).

MPIIGaze [12] is collected from 15 subjects in real-
world environments. According to the standard evaluation
protocol, which selects 3000 images from each subject to
form an evaluation set, we adopt the evaluation set directly.

RT-GENE [3] is collected in natural environment with
large camera-to-subject distances, which contains high vari-
ations in head poses and gaze as well. Following [2, 9],
108,965 images are employed as the evaluation set.

GazeCapture [7] contains over 2.5 M frames collected
from 1450 people, which is collected with mobile phone

and tablets. Following [2,9], 179,496 images from 150 sub-
jects are employed as the evaluation set.

EyeDiap [4] contains video clips from 16 subjects and
screen targets or 3D floating balls are taken as gaze tar-
get. Following [2,9], 16,674 images from 14 subjects under
screen target sessions are employed as the evaluation set.

C. Training Details

Training details. We perform our experiments on Tesla-
V100 GPU. The resolution for input images in all the ex-
periments is set as 224×224, which follows the convention
of [6,11], while different from [9], which employs 448×448
as the resolution of input for training on Gaze360. We take
ResNet-50 [5] as the backbone to extract features for all ex-
periments if without extra annotation, a 2-layers MLP as
CR predictor to generate 128-dim CR feature vectors, and
an FC layer to regress a 2-dim gaze vector for pitch and yaw
angles respectively. For domain generalization task CDG
on source domain DE , we follow [11], set the batch size as
128, use the Adam optimizer with a learning rate of 5×10−4
and train for 25 epochs using a decay factor 0.1 every 10
epochs. For CDG on source domain DG, we follow [6], set
the batch size as 128, use the Adam optimizer with a learn-
ing rate of 4 × 10−4 and train for 100 epochs. For domain
adaptation tasks, the hyperparameter setting keeps the same
as that in domain generalization task CDG in source domain
DE .
Data augmentations. We employ a data augmentation
family with a random color field and greyscale.



Figure S-3. Scatter plot of predictions and ground-truth labels before and after our CRGA on source domain DG. Scatter points in blue
represent baseline predictions, red ones represent ground-truth labels, and green ones represent predictions of our CRGA.

D. Additional Experiments
D.1 Ablation study on prior λ.

Illustrated in Tab. S-1, high λ will mislead the model to
pull feature with far gaze together, while small λ will push
feature with close gaze apart. Thus we choose λ = 0.07
and achieve an impressive performance.

CDG DG → DM DG → DR DG → DC DG → DD
λ = 0.03 7.55 20.75 9.29 7.91
λ = 0.07 7.03 20.79 8.28 7.27
λ = 0.15 8.05 25.39 9.94 7.91

Table S-1. Ablation study on different λ.

D.2 Comprehension of CRGA

To understand the effectiveness of our proposed CRGA
intuitively, we visualize the gaze prediction on eight gaze
adaptation task on Fig. S-1. The 3d gaze direction is repre-
sented by the projection of 3d unit vector on the image plane
as arrow. We compare the gaze ground truth, gaze predic-
tion by CRGA and gaze prediction by baseline model in the
figure with red, green and red arrows respectively. The vi-
sualization show that the gaze prediction by CRGA is more
closer to ground truth and CRGA could alleviate the do-
main adaptation problem of gaze estimation. We also show
the distributions of predictions before and after our CRGA
on eight tasks in Fig. S-2 and Fig. S-3. Our method signif-
icantly reduces the degree of outlier, the prediction distri-
bution of our CRGA are much closer to the distribution of
ground-truth labels.

D.3 Extension Experiments on different backbones

We perform two sets of experiments on the domain adap-
tation task DG → DM using ResNet-50 as the backbone
and DE → DM using ResNet-18 as the backbone respec-
tively. In detail, for each set of experiments, we conduct
two pipelines for comparison, one in which we perform our
CRGA for different iterations I , the other in which we per-
form self-training with different iterations I on the baseline
model without our derived CSA loss. This indicates that
our approach could be suitable and effective for different
backbones.

D.4 Extension Experiments on Feature Visualiza-
tion

We conduct further experiments on feature visualization
to exhibits the effectiveness of our proposed CR loss. We
perform our experiments for CRGA tasks on DE → DM ,
DE → DC , DE → DD, DG → DM , DG → DC ,
DG → DD. Here we do not perform experiments onDR for
its poor performance compared with other target domains
(even though we can outperforms the state-of-art perfor-
mance). The results are presented in Fig. S-4. All the fig-
ures shows a clear colour gradient that features with closer
labels are pull closer together.

D.5 Extension Experiments on Decoupling Gaze
and Head Pose

We conduct further experiments to decouple the gaze es-
timation and head pose estimation. Two specific full con-
nect modules are employed to regress gaze and head pose



Figure S-4. Illustration of the feature distribution, different colors indicate different gaze directions(best viewed in color). In the first
row, we conduct experiments from source domain DE . (a) is the visualization of 20,000 feature points selected from the datasets on
DE → DM , (b) is the visualization of all feature points (45,000) from the datasets on DE → DM , (c) is the visualization of 20,000 feature
points selected from the datasets on DE → DC , (d) is the visualization of 50,000 feature points selected from the datasets on DE → DC ,
(e) is the visualization of all feature points (16,674) from the datasets on DE → DD . In the second row, we conduct experiments from
source domain DG. (f) is the visualization of 20,000 feature points selected from the datasets on DG → DM , (g) is the visualization of
all feature points (45,000) from the datasets on DG → DM , (h) is the visualization of 20,000 feature points selected from the datasets on
DG → DC , (i) is the visualization of 50,000 feature points selected from the datasets on DG → DC , (j) is the visualization of all feature
points (16,674) from the datasets on DG → DD .

(a)DG → DM using ResNet50

(b)DE → DM using ResNet18

Figure S-5. Ablation study on iterations of self-training. Angular
gaze error (◦) is used as the evaluation metric.

Method DE → DM DE → DR DE → DC DE → DD
Baseline 9.19 18.23 13.43 8.62
CDG 6.73 16.45 9.23 7.85
Decouple 7.36 19.65 9.04 7.18

Table S-2. Ablation study on decoupling the gaze and head pose.
Angular gaze error (◦) is used as evaluation metric. Here, lower
error rate stands for better performance.

respectively. We choose DE as the source domain and
verify the domain generation performance. The results is
shown in Fig S-2. Decoupling the gaze and head pose ex-
hibits slight improvement generalized onDC andDD while
degrading generalized on DM and DR. This indicates that
decoupling gaze and head pose directly provides little help.

D.6 Extension Experiments on our motivation

We test unsupervised contrastive learning method
DINO [1], but it only gets a 45 ◦ gaze error onDE . We visu-
alize the attention map from 5 heads of the VIT trained with
supervised and unsupervised manner (DINO) in Fig S-6,
and almost no eye attention is captured by DINO. Besides,
the supervised contrastive classification learning (SupCon)



Figure S-6. Attention maps from five heads of vision transformers.
The top is supervised, while the bottom is unsupervised (DINO).

Figure S-7. Comparison of SupCon loss and CR loss on head pose
regression domain adaptation on DE → DR.

failed in regression tasks. Other than gaze estimation, we
further conduct self-training experiments on head pose do-
main adaptation DE → DR in Fig. S-7 to prove that our
motivation is not limited to gaze.

E. Limitation and Future Work
Although CRGA facilitates gaze domain adaptation, it

still has limitations. Such as several iterations for self-
training, which could be further explored with the EMA
teacher. The outliers in the visualization of our feature dis-
tribution suggest that we can make further improvements
on aligning the features in future research. Further explo-
ration of the contrastive regression learning on the source
domain in a totally unsupervised manner (not the domain
adaptation) is left for future research.

References
[1] Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou,
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