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In the following, we provide Algorithms Pseudocode,
Model Architecture and Training details and Algorithms for
the training and evaluation process for the DeepFake Dis-
rupter and additional experiments.

1. Algorithm

Algorithm 1: Training with DeepFake Disrupter
Data: real inputs x, target conditions c,

hyper-parameter ϵ, C1, C2, C3 and number of
epochs E, batch size B

Result: Well trained Perturbation generator P (·)
1 Initialize Perturbation Generator P (·) with weight

Wp;
2 Initialize loss weights to Wi = 1, for i = 1, 2, 3,

where Wi = Ci;
3 Loading pre-trained DeepFake Generator G with

weight WG;
4 Loading pre-trained DeepFake discriminator D with

weight WD;
5 for epoch = 0 to E do
6 for i = 1 to B do
7 Compute perturbation η by η = P (x);;
8 Compute Adversarial Inputs x̂ = x+ η;
9 Compute L using Eq.(7);

10 Update Wp(t+1)
←Wp(t)

using ∇WL(t);
11 Keep WG and WD unchanged after each

iteration;
12 Using GradNorm [1] to update loss item

weights Wi

13 end
14 end

*Equal Contribution

Algorithm 2: Evaluation Detection Outcomes
Data: a batch of test data: real images or videos x,

target conditions c, number of testing data: N
Result: Precision p, Recall r and F-1 score F

1 Loading pre-trained models P (·), G(·) D(·);
2 for data in batches do
3 Compute η = P (x);
4 Compute xfake = G(x+ η, c);
5 Compute xpreal = x+ η;
6 end
7 Pass N real inputs x, N fake inputs xfake into

DeepFake Detector D;
8 Compute

p = True Real/(True Real + False Real);
9

r = True Real/(True Real + False Fake);
10 F1 = 2 ∗ (P ∗ r)/(p+ r);
11 Pass N perturbed inputs xpreal into D;
12 Compute

r = True Real/(True Real + False Fake)

2. Model Architecture and Training Details

Perturbation Generator For perturbation generator
P (·), We choose U-Net [5]. The U-net architectures can
be divided into two sections: The encoding section and the
decoding section. We use 2D U-Net for image-based ex-
periment and 3D U-Net for video-based experiment. In the
encoding section, we apply contraction blocks consists of
2D or 3D convolution and max-pooling layers to encode
the source inputs. In the decoding section, we apply expan-
sion blocks consisting of 2D or 3D transpose convolution as
well as normal 2D or 3D convolutions. The center part of
U-Net is that each feature map of the encoding section has a
shortcut connection with the corresponding feature map in
the decoding section.

DeepFake Generator We use StarGAN [2], GANimation
[4] and First-Order-Motion Model [8] to illustrate that our
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proposed pipeline can be used for different DeepFake ma-
nipulation systems. For StarGAN, we use a pretrained gen-
erator model in the open-source implementation used by
[7]. This generator is trained on the CelebA dataset with
seven domains including black hair, blond hair, brown hair,
gender(male/female) and aged(young/old). For GANima-
tion, we use its official open-source pretrained generators
trained for 37 epochs on the CelebA dataset for 80 action
units(AU) based on the Facial Action Unit Coding System
[3]. For First-Order Motion Model, we deploy its official
open-source framework. The core part of this framework
includes motion estimation and image generation. Firstly,
a source image and a driving video will be fed into Motion
Module, then the Motion module will use a keypoint detec-
tor to extract motion representations, after which generating
a dense optical flow and occlusion map mapping from the
driving video to the source image. Finally, the generation
process will provide quality animations by feeding into the
source image and Motion Module’s outputs.

DeepFake Detector As our work is to test the effective-
ness of perturbation generator rather than detection power
of deepfake detectors, we use commonly used backbone
for various SOTA deepfake detectors, namely Xception,
Resnet18 and Resnet50 as our detection architectures. All
these models are trained on the FaceForensic++ datasets. In
terms of image level detectors, for Xception architecture,
we choose the open-source pretrained model from [6]. For
Resnet18 and Resnet50, we trained 100 epochs to get a clas-
sification accuracy at 96% and 98% respectively. In terms
of video level discriminators, we choose 3D Xception and
3D resnet18 and trained 100 epochs to get accuracy at 91%
and 95% respectively.

Hyper Parameters There are several hyper parameters.
The first one is ϵ introduced in Eq. (1) in the main sub-
mission to constrain the scale of perturbation. In order to
ensure the perturbation to be human imperceptible, we fol-
low baseline method [7] to set ϵ = 0.05. For hyper param-
eters C1, C2 and C3 that balance the different loss items,
we initialize them to be 1 at the beginning, and then we fol-
low GradNorm [1] algorithm to adaptively update the loss
weight items at each iteration. In the GradNorm algorithm,
there is a further hyper parameters α that corresponding to
the strength of restoring force, and we set α = 0.1 for all
our experiments. For detailed explanation of the GradNorm
algorithm, please refer to the original work.

3. Additional Experiments
Adaptive Attack An attacker knowing the detector chal-
lenges the defender. But preparing for the worst could per-
haps ensure that the worst will not happen. We thus train an
enhanced deepfake generator G

′
by incorporating the de-

tector loss. We use G
′

and detector D to train disrupter P .
We choose StarGAN as our attacker, Xception as the de-

tector. In Table 1, if the attacker knows the detector, [20]
will have a much lower precision and F1-score (e.g. 0.52
& 0.67 in Disrupting StarGAN), but the performance of our
DeepFake Disrupter can remain similar as before.

Disruption Methods precision recall F1-score

Disrupting StarGAN [7] 0.64 0.99 0.78
Disrupting StarGAN [7]-Adaptive 0.52 0.99 0.67

DeepFake Disrupter(Ours) 0.86 0.99 0.92
DeepFake Disrupter(Ours-Adaptive) 0.83 0.99 0.89

Table 1. Deepfake detection performance with adaptive attacks.

Ablation on different test size In Table 2, our algorithm
can achieve superior results under three larger test sizes
evaluated by Xception/Resnet18 for StarGAN/GANimation
generators.

Disruption Methods Xception Resnet18

100 500 1000 100 500 1000

StarGAN [2] 0.72 0.70 0.73 0.56 0.58 0.61
Disrupring StarGAN [7] 0.78 0.77 0.74 0.60 0.56 0.59

DeepFake disrupter (ours) 0.92 0.93 0.91 0.71 0.75 0.71
GANimation [4] 0.74 0.76 0.72 0.55 0.52 0.59

Disrupting GANimation [7] 0.82 0.79 0.83 0.60 0.64 0.58
DeepFake disrupter (ours) 0.89 0.88 0.91 0.75 0.71 0.77

Table 2. F1-score under different test image size 100, 500, 1000
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