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014 In the following, we provide Algorithms Pseudocode, Algorithm 2: Evaluation Detection Outcomes 068
015 ModeloA.rchltecture and Tralnlng details and Algorithms f.or Data: a batch of test data: real images or videos z, 069
016 the training an.d. evaluatlon. process for the DeepFake Dis- target conditions ¢, number of testing data: N 070
017 rupter and additional experiments. Result: Precision p, Recall » and F-1 score F' 071
018 1 Loading pre-trained models P(-), G(-) D(-); 072
019 . 2 for data in batches do 073
020 1. Algorithm s | Computen = P(x): 074
021 4 Compute z o5 = G(x + 1, ¢); 075
022 5 Compute Tpreqr = T + 1; 076
023 Algorithm 1: Training with DeepFake Disrupter 6 end 077
024 Data: real inputs z, target conditions c, 7 Pass IV real inputs z, IV fake inputs z ¢4, into ore
025 hyper-parameter ¢, C;, Cy, C3 and number of DeepFake Detector D; 079
026 epochs E, batch size B 8 Compute 080
027 Result: Well trained Perturbation generator P(-) p = True_Real/(True_Real + False_Real); 081
028 1 Initialize Perturbation Generator P(-) with weight 9 082
029 W,; r = True_Real /(True_Real + False_Fake); 083
030 2 Initialize loss weights to W; = 1, fori = 1,2, 3, 10 F1=2x(Pxr)/(p+7); o84
031 where W, = C;; 11 Pass IV perturbed inputs ,.cq; into D; 085
032 3 Loading pre-trained DeepFake Generator G with 12 Compute 086
223 weight Wg; r = True_Real /(True_Real + False_Fake) 8:;
4 . . . . .
035 ! L\?Vi?;f TE)TZ ;tramed DeepFake discriminator 1 with 2. Model Architecture and Training Details 089
036 5 for epoch =0 to E do 090
gz; 6 | fori=1t Bdo . Perturbation Generator For perturbation generator gz;
030 7 Compute perturbatl.on n by n= P(x);; P(-), We choose U-Net [5]. The U-net architectures can 093
040 8 Compute Ade.:rsarlal Inputs z = z + n; be divided into two sections: The encoding section and the 094
0a1 9 Compute L using Eq.(7); . decoding section. We use 2D U-Net for image-based ex- 095
ous 10 Update Wy, ., < Wy, using Vi L(2); periment and 3D U-Net for video-based experiment. In the 096
043 11 Keep W and Wp unchanged after each encoding section, we apply contraction blocks consists of 097
iteration; 2D or 3D convolution and max-pooling layers to encode
044 . . . . . 098
045 12 Using GradNorm [1] to update loss item the source 1nput§. I.n the decoding section, we apply expan- 099
046 weights W; sion blocks consisting of 2D or 3D transpose convolution as 100
047 13 end well as normal 2D or 3D convolutions. The center part of 101
048 14 end U-Net is that each feature map of the encoding section has a 102
049 shortcut connection with the corresponding feature map in 103
the decoding section.
050 104
051 DeepFake Generator We use StarGAN [2], GANimation 105
052 [4] and First-Order-Motion Model [¢] to illustrate that our 106
053 “Equal Contribution 107
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proposed pipeline can be used for different DeepFake ma-
nipulation systems. For StarGAN, we use a pretrained gen-
erator model in the open-source implementation used by
[7]. This generator is trained on the CelebA dataset with
seven domains including black hair, blond hair, brown hair,
gender(male/female) and aged(young/old). For GANima-
tion, we use its official open-source pretrained generators
trained for 37 epochs on the CelebA dataset for 80 action
units(AU) based on the Facial Action Unit Coding System
[3]. For First-Order Motion Model, we deploy its official
open-source framework. The core part of this framework
includes motion estimation and image generation. Firstly,
a source image and a driving video will be fed into Motion
Module, then the Motion module will use a keypoint detec-
tor to extract motion representations, after which generating
a dense optical flow and occlusion map mapping from the
driving video to the source image. Finally, the generation
process will provide quality animations by feeding into the
source image and Motion Module’s outputs.

DeepFake Detector As our work is to test the effective-
ness of perturbation generator rather than detection power
of deepfake detectors, we use commonly used backbone
for various SOTA deepfake detectors, namely Xception,
Resnet18 and Resnet50 as our detection architectures. All
these models are trained on the FaceForensic++ datasets. In
terms of image level detectors, for Xception architecture,
we choose the open-source pretrained model from [6]. For
Resnet18 and Resnet50, we trained 100 epochs to get a clas-
sification accuracy at 96% and 98% respectively. In terms
of video level discriminators, we choose 3D Xception and
3D resnet18 and trained 100 epochs to get accuracy at 91%
and 95% respectively.

Hyper Parameters There are several hyper parameters.
The first one is ¢ introduced in Eq. (1) in the main sub-
mission to constrain the scale of perturbation. In order to
ensure the perturbation to be human imperceptible, we fol-
low baseline method [7] to set e = 0.05. For hyper param-
eters C7, Cy and C3 that balance the different loss items,
we initialize them to be 1 at the beginning, and then we fol-
low GradNorm [1] algorithm to adaptively update the loss
weight items at each iteration. In the GradNorm algorithm,
there is a further hyper parameters « that corresponding to
the strength of restoring force, and we set &« = 0.1 for all
our experiments. For detailed explanation of the GradNorm
algorithm, please refer to the original work.

3. Additional Experiments

Adaptive Attack An attacker knowing the detector chal-
lenges the defender. But preparing for the worst could per-
haps ensure that the worst will not happen. We thus train an
enhanced deepfake generator G by incorporating the de-

tector loss. We use G and detector D to train disrupter P.
We choose StarGAN as our attacker, Xception as the de-
tector. In Table 1, if the attacker knows the detector, [20]
will have a much lower precision and Fl-score (e.g. 0.52
& 0.67 in Disrupting StarGAN), but the performance of our
DeepFake Disrupter can remain similar as before.

Disruption Methods precision recall Fl-score
Disrupting StarGAN [7] 0.64 0.99 0.78
Disrupting StarGAN [7]-Adaptive 0.52 0.99 0.67
DeepFake Disrupter(Ours) 0.86 0.99 0.92

DeepFake Disrupter(Ours-Adaptive) 0.83 0.99 0.89

Table 1. Deepfake detection performance with adaptive attacks.

Ablation on different test size In Table 2, our algorithm
can achieve superior results under three larger test sizes
evaluated by Xception/Resnet18 for StarGAN/GANimation
generators.

Disruption Methods Xception Resnet18
100 500 1000 100 500 1000
StarGAN [2] 0.72 070 0.73 056 0.58 0.61
Disrupring StarGAN [7] 0.78 0.77 0.74 0.60 0.56 0.59
DeepFake disrupter (ours) 0.92 093 091 0.71 0.75 0.71
GANimation [4] 074 0.76 0.72 055 0.52 059

Disrupting GANimation [7] 0.82 0.79 0.83 0.60 0.64 0.58
DeepFake disrupter (ours) 0.89 0.88 091 0.75 0.71 0.77

Table 2. F1-score under different test image size 100, 500, 1000
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