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Abstract

To operate in real-world high-stakes environments, deep
learning systems have to endure noises that have been con-
tinuously thwarting their robustness. Data-end defense,
which improves robustness by operations on input data in-
stead of modifying models, has attracted intensive atten-
tion due to its high feasibility in practice. However, previ-
ous data-end defenses show low generalization against di-
verse noises and weak transferability across multiple mod-
els. Motivated by the fact that robust recognition depends
on both local and global features, we propose a defensive
patch generation framework to address these problems by
helping models better exploit these features. For the gen-
eralization against diverse noises, we inject class-specific
identifiable patterns into a confined local patch prior, so
that defensive patches could preserve more recognizable
features towards specific classes, leading models for bet-
ter recognition under noises. For the transferability across
multiple models, we guide the defensive patches to capture
more global feature correlations within a class, so that they
could activate model-shared global perceptions and trans-
fer better among models. Our defensive patches show great
potentials to improve model robustness in practice by sim-
ply sticking them around target objects. Extensive experi-
ments show that we outperform others by large margins (im-
prove 20+% accuracy for both adversarial and corruption
robustness on average in the digital and physical world).1

1. Introduction

Though deep neural networks (DNNs) have achieved
significant successes in multiple areas, their robustness is
challenged by noises, especially in physical world scenar-
ios. Adversarial noise, an imperceptible perturbation de-
signed to mislead the decision of DNNs, is now becoming a
great threats [9,44]. Besides adversarial attacks, DNNs also
show weak robustness against common corruptions in the
daily environment (e.g., snow, rain, brightness etc) [14,15].

1Our codes are available in the Supplementary Material.

(a) (b)

Turn Right ：0.89

Snow

(c)

Go Straight or Left：0.93

Snow

(d)

Figure 1. (a) Different guideboards in the physical world. (b) Sam-
ples with generated defensive patches in the digital world. (c) The
model prediction is misled into Turn Right when it is snowy
in the physical world. (d) Defensive patches can help models to
conduct correct predictions during snow in the physical world.

For example, the guide boards will be incorrectly classified
as Turn Right when it is snowy (Figure (1c)). What’s
worse, these inevitable noises have caused dozens of self-
driving accidents with casualties and are casting a shadow
over the deep learning applications in practice [22]. This
urges us to investigate feasible defenses for building robust
deep learning models in the physical world.

In the past years, a great number of efforts have been
made to defend against the adversarial perturbations and
further improve model robustness [12, 26, 31, 38, 54]. Most
of the existing works focus on enhancing robustness from
model-end (e.g., data augmentation, adversarial training),
which require an additional cost of the model architecture
modification or model retraining. In contrast, another line
of studies performs defenses from the data-end without im-
posing any model modification (e.g., input transformation),
which has shown great potential in practice [37, 51]. For
example, by simply sticking a patch on the traffic sign,
our proposed defensive patch can help DNNs to make ro-
bust recognition under noises (Figure 1d). Though showing
great application potential, existing data-end defenses show
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several limitations when applied in practice: (1) Weak gen-
eralization for diverse noises. Existing works show a signif-
icant drop when facing different unseen noises (e.g., adver-
sarial attacks, common corruptions). (2) Low transferabil-
ity across multiple models. In other words, these works fail
to perform defenses for black-box models and even being
counteractive. We attribute this phenomenon to the under-
utilization of robust recognition characteristics.

To address the problems mentioned above, this paper
proposes a data-end defensive patch generation framework,
which could be effective against diverse noises and work
among different models (Figure (1b) and Figure (1d)). Pre-
vious studies have revealed strong evidence that robust
recognition highly depends on the exploitation of local and
global features [34, 35, 53], we thereof improve the de-
fense ability of our defensive patches by promoting better
exploitation of both local and global features. Regarding
the generalization against diverse noises, since deep learn-
ing models rely strongly on the local patterns for predic-
tions [17, 24, 29], we optimize the locally confined patch
priors to contain more class-specific identifiable patterns
via reducing model uncertainty. Based on these class-level
patch priors, the defensive patches can preserve more rec-
ognizable features for a specific class and help models to
better resist the influence of different noises, i.e., better gen-
eralization. As for the transferability across multiple mod-
els, recent studies found that different models share sim-
ilar global perception during decision-making [2, 21, 46],
we thus guide the defensive patches to capture more class-
wise global feature correlations. In other words, the defen-
sive patches could contain more global features correlated
to the class. Thus, the generated defensive patches could
better activate the model-shared global perception and en-
joy stronger transferability among multiple models. In con-
clusion, our main contributions can be summarized as:

• To the best of our knowledge, we are the first to gen-
erate data-end defensive patches that could improve
model robustness against diverse noises (adversarial
attacks and corruptions) among different models.

• Our defensive patches improve robustness by injecting
local identifiable patterns and enhancing global per-
ceptual correlations, which can be easily deployed via
sticking them around target objects.

• Extensive experiments show that our defensive patch
outperforms others by large margins (+20% accuracy
for both adversarial and corruption robustness on aver-
age in digital and physical world).

2. Related Work
2.1. Adversarial Attacks

Extensive studies have shown that deep learning models
are highly vulnerable to adversarial attack [9, 44]. These

imperceptible perturbations could easily make DNNs mis-
classify the input images. Besides adversarial perturbations,
adversarial patches are designed to attack DNNs by attach-
ing additional stickers for their feasibility in the physical
world [1, 4, 25, 27, 28, 46], including patches [1], camou-
flages [46], and light [5]. [1] proposes the first adversarial
patch generation strategy, revealing the possibility of gener-
ating physical adversarial examples. [46] generates patch-
like adversarial camouflage in a 3D environment by sup-
pressing model and human attention. Some researchers aim
to perform adversarial attacks in the physical world with
adversarial lights (e.g., laser [5] and infrared light [55]).

Besides adversarial attacks, there exist another type of
noise named common corruptions, which are commonly-
witnessed natural noises, e.g., blur, snow, and frost, etc. A
line of works has been devoted to studying the influence
of common corruptions for DNNs by various approaches
[14–16]. [15] proposes a challenging datasets on ImageNets
(i.e., ImageNet-C), which contain 15 different types of com-
mon corruptions. [16] find that unmodified examples can
mislead various unseen models reliably. In summary, the ro-
bustness of DNNs is highly challenged by the diverse noises
in the physical world, which urges us to improve the model
robustness and applicability.

2.2. Adversarial Defenses

Adversarial defenses aim to improve the model robust-
ness against adversarial attacks, which play an important
role in increasing the availability of DNNs in the real world.
Recent studies indicate that there exists three mainstreams
in adversarial defenses: (1) Gradient masking, which aims
to hide the key information of the model (i.e., gradients), in-
cluding defensive distillation [33], shattered gradients [11],
randomized gradient [3], etc [38, 42]. (2) Adversarial train-
ing, which improves the model robustness through adver-
sarially training the classifier with adversarial examples
[9,26,31,40,45,47,49,52]. (3) Adversarial example detec-
tion, which aims to distinguish whether the input is clean or
adversarial example [8, 10, 20]. The above-mentioned stud-
ies primarily focus on improving model robustness from the
model-end, which requires the model architecture modifica-
tion or model re-training. Besides, there also exists another
type of defense, which is more feasible in the real world by
modifying the input data (i.e., data-end defenses), such as
input transformation [50] or image compression [19].

In this paper, we focus on the data-end defense and de-
sign a defensive patch to improve model robustness against
diverse noises in the physical world.

3. Approach

In this section, we first give the definition of the defen-
sive patch and then elaborate on the proposed framework.

2
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3.1. Problem Definition

A perturbed example x′, which consists of a clean exam-
ple and additional noises, can mislead a given deep neural
network F into wrong prediction, i.e., F(x) 6= F(x′). Given
a k-class dataset X = X 1∪X 2∪ · · ·∪X k, the clean exam-
ple x ∈ X and its corresponding perturbed example x′ are
subject to a ε-constraint. Base on the above knowledge, we
now provide the definition of defensive patch δ as

F(x) = F(x′ ⊕ δ) s.t. ‖δ‖ ≤ ε, (1)

where ‖·‖ is a distance metric which is often measured by
`p-norm (p ∈{1, 2, ∞}), and ε is a constraint value. The
defensive patch δ also satisfies the F(x) = F(x ⊕ δ) con-
straint. And the operation ⊕ obeys the following equation

x⊕ δ = (1−M)� x+ M�δ, (2)

where � is the element-wise multiplication and M is a
shape mask to decide the masking position and appearance.

3.2. Framework Overview

Previous studies have indicated that robust recognition
shows high dependence on the combination of local and
global features [34,35,53], we thus propose to generate de-
fensive patches with strong noise generalization and model
transferability by helping models for the better exploitation
of local and global features. Thus, our defensive patches
can significantly improve the robustness of recognition. The
overall framework is shown in Figure 2.

Regarding the generalization against diverse noises, in-
spired by the fact that deep learning models recognition de-
pends heavily on local patterns [17, 24, 29], we inject more
class-specific identifiable patterns into the confined local
patch prior. Thus, the defensive patch optimized from the
patch prior could preserve more class-specific recognizable
features, which could lead the model to better recognition
under diverse noises. As for the transferability across mul-
tiple models, since different models focus on the similar
global perception when making decisions [2, 21, 46], we
guide the defensive patches to capture more global feature
correlations within a class using Gram matrix in an ensem-
ble way. Thus, our defensive patches could better activate
model-shared global perceptions and show stronger trans-
ferability among models.

3.3. Local Identifiable Patterns Guidance

Several previous studies have pointed out that deep
learning models show a strong dependence on local pat-
terns [17, 24, 29], e.g., local patterns are exploited to im-
prove the emotion recognition ability of the model [17].
Therefore, we aim to inject more class-specific identifiable
patterns into the confined local patch prior. The defensive
patch optimized from the prior can be treated as a typical

class-specific representation [27], hence helping the model
for better recognition under different noises.

In practice, we first consider the shape of the local patch
prior. Since the defensive patch is designed to improve
model robustness in the real-world scenario, it is necessary
to evade the influence for human vision (i.e., without cov-
ering the target object). Thus, we set the shape mask M in
Equation 2 as a w-pixels square box surrounding the target
object (i.e., like guideboard border). Thus, the initial patch
prior δ is reformulated as

δ = 0 + M�1, (3)

where the 0 and 1 are respectively a tensor in which each
element is 0 or 1, and their dimensions are the same with
input size of M. Note that the position mask can be replaced
with any different shapes based on the scenario (see studies
in Section 4.5.3).

To inject more class-specific identifiable patterns into the
confined local prior, we borrow a pattern extraction model
to optimize the patch prior by an entropy-based loss func-
tion. Since the entropy is widely used to depict the class
uncertainty, i.e., higher entropy indicates higher uncertainty
to recognize the object. We thus force the patch priors to
reduce the entropy of a certain class, i.e., making it more
recognizable for a specific class. In this way, the defen-
sive patches can be optimized to contain more class-specific
identifiable patterns and resist the influence of different
noises. In particular, given a pattern extraction model M
and specific class index k, we optimize the δk0 (initialized as
δ) by calculating the identifiable pattern loss Lp as

Lp = − logPM(δ
k
0 ), (4)

where PM is the prediction value of M with class index k. It
is important to note that no input data is needed in the patch
prior generation process and M could be any pre-trained
model for this task.

Due to the fact that the typical patch priors contain more
identifiable patterns, the defensive patches optimized from
these priors could preserve more recognizable features to-
wards a specific class and show better generalization against
different noises. After the patch prior generation, we exploit
the typical patch prior δk0 in the following defensive patch
optimization procedure.

3.4. Global Perceptual Correlation Enhancement

Motivated by the fact that models often share similar
global perception when making correct predictions towards
a specific class [2, 21, 46], we aim to improve the trans-
ferability among different models by better activating the
model global perception.

Since the context of the target objects is essential as well
for making a correct perception [7], we make the defensive

3
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Figure 2. Defensive patch generation framework. We first generate a typical patch prior for each category and inject more class-specific
identifiable patterns into the confined local patch from the local viewpoint. Further, we help the defensive patches to contain more global
features correlated to each category in an ensemble way from the global viewpoint. Therefore, the generated defensive patches enjoy both
strong generalization and transferability.

patches capture more globally contextual features within a
certain class. Considering the fact that Gram matrix can
be exploited to represent the correlations of features within
an image [6], we design a global correlation loss based on
Gram matrix by introducing stronger global feature corre-
lations with respect to the class in an ensemble approach.
Therefore, the generated defensive patches can better acti-
vate the model global perception and achieve stronger trans-
ferability among different models.

Specifically, given classifiers Fi (i = 1, 2, ...,N), we first
initialize the defensive patch δkd of the i-th class as δk0 ; we
then optimize the intermediate defensive patch of the i-th
classifier δ̂k,id from the δkd using clean examples x ∈ X k

based on Lt as

Lt = yk · logPFi(x⊕ δ̂
k,i
d ), (5)

where yk denotes the ground-truth label of x, PFi
denotes

the prediction value of Fi with the input x⊕ δ̂k,id .
We then optimize our defensive patches by exploiting the

most similar global perception shared among these interme-
diate patches from different models. In detail, we introduce
the Gram matrix to optimize δkd based on the combination
of multiple δ̂k,id by perceptual correlation loss Lc as

Lc =
1

N

N∑
i

‖G(x⊕ δkd)−G(x⊕ δ̂k,id )‖22,

Gp,q(I) =
∑
c

Ipc · Iqc,
(6)

where Gp,q(I) means the Gram matrix value of input I at
position (p, q), and I·c indicates the pixel value of the input
I at channel c. We conduct the above defensive patch gen-
eration process in a progressive manner, and the optimized

defensive patch during each iteration will serve as the prior
for the next iteration.

Besides, it should be noted that this optimization pro-
cess could also work under the single model setting, i.e.,
N=1 (See experiments in Section 4.2). We hypothesize the
reason might be that as the high-order interaction, the global
perceptual correlation perceived by a model plays an impor-
tant role in robust recognition against attacks [36].

To sum up, through enhancing the global perceptual cor-
relations in an ensemble approach, the generated defensive
patches can enjoy stronger transferability across multiple
models by activating model-shared global perception.

3.5. Overall Training Process

We generate the defensive patch by serially conduct-
ing two optimization processes, i.e., generating the typical
patch prior by the identifiable pattern loss Lp and optimiz-
ing the defensive patch by the training loss Lt and the per-
ceptual correlation loss Lc.

Specifically, for each class, we first initialize all typi-
cal patch priors as δ. Then we optimize the patch prior of
the k−th class by minimizing Lp with a pattern extraction
model M and the local position constraint M. Furthermore,
we employ N different models to conduct an ensemble-
based perceptual correlation enhancement optimization. In
detail, for each epoch, we obtain N intermediate defensive
patches δ̂k,id by maximizing the training loss Lt. After that,
we minimize Lc to generate the defensive patches δkd and
then perform defenses by simply using them as additional
ornaments. Note that we set the model number N as 4 in
this paper. The overall training algorithm can be described
in Algorithm 1.

4
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Algorithm 1 Defensive Patch Generation

Input: dataset X = {X 1 ∪ X 2 ∪ · · · ∪ X k}, shape mask
M, pattern extraction module M, classifiers Fi=1,2,3,4.

Output: defensive patch δd.
1: initialize patch prior δ0 as δ;
2: for k in number of classes do
3: for the number of prior-training steps do
4: optimize the δk0 by minimize Lp;
5: end for
6: end for
7: initialize defensive patch δd as δ0 = {δ00 , δ10 , ..., δk0};
8: for the number of patch-training epochs do
9: for k in number of classes do

10: for i in number of classifiers do
11: for all x ∈ X k do
12: optimize the δ̂k,id by maximize Lt;
13: end for
14: end for
15: for all x ∈ X k do
16: optimize the δkd by minimize Lc;
17: end for
18: end for
19: end for

4. Experiments

In this section, we first illustrate our experimental set-
tings, then evaluate the effectiveness of our defensive patch
in both the digital and physical world.

4.1. Experimental Settings

Datasets and models. For the dataset, we choose the
widely-used CIFAR-10 [23] and GTSRB (guideboard clas-
sification dataset) [43]. Regarding the models, we se-
lect the commonly used architectures including VGG-16
(denote “VGG”) [41], ResNet-50 (denote “RNet”) [13],
ShuffleNet-V2 (denote “SNet”) [30], and MobileNet-V3
(denote “MNet”) [18].

Diverse noises. In this paper, we employ 3 types of
noises which are realizable in the physical world, e.g., cor-
ruptions [15], AdvP [1], and AdvL [5]. Specifically, for
corruptions, we adopt the strategies from [15] and imple-
ment 16 kinds of corruptions such as fog, rainy, Gaussian,
and light, etc. For each corruption, we select 5 different
intensities.

Evaluation metrics and compared baselines. To eval-
uate the performance of our proposed method, we choose
the widely used metric accuracy as the evaluation metric
(the higher the better) following [37]. As for the compared
baselines, we employ UnAdv [37] and Trans [50], which are
the state-of-the-art data-end defenses. We use their released
codes for implementation and select reasonable settings for

fair comparisons.
Implementation details. For the hyper-parameter a, we

set it as 4, which means 4 different models are employed.
For the shape mask M, we design a w-pixels bold box sur-
rounding the object which constrains the patch size to 1/5
of image size following one of the implementations in [37].
The backbone of the pattern extraction model M is VGG-
19 [41]. During the prior and patch generation process, we
use Adam optimizer with the learning rate of 0.01, weight
decay of 10−4, and a maximum of 20 epochs. All codes are
implemented in PyTorch. We conduct the training and test-
ing processes on an NVIDIA GeForce RTX 2080Ti GPU
cluster2.

4.2. Digital World Evaluation

In this section, we first evaluate the performance of our
generated defensive patches in the digital world. Note that
we select the public dataset CIFAR-10 to conduct digital
world experiments.

Since our defensive patch generation framework em-
ploys several different models, it is unfair to directly com-
pare our method with other baselines. Therefore, we con-
duct 2 different experiments respectively: (1) we generate
our defensive patch by only using the same single target
model with UnAdv; (2) we perform similar ensemble train-
ing for both UnAdv. Since Trans performs defenses without
requiring target models, we directly report its results2.

According to Table 1 and Table 2, we can conclude that
our defensive patches show better performance for improv-
ing model robustness, i.e., generalization against diverse
noises and transferability among different models. We pro-
vide several conclusions as follows:

(1) For generalization against diverse noises, it can be
observed that our defensive patches achieve higher accuracy
under almost all noises. For example, for the single model
setting on RNet, our method yields up to 10.81% improve-
ment compared with UnAdv under white-box settings; for
ensemble setting on MNet, we outperform Unadv and Trans
up to 44.11% and 22.88%, respectively.

(2) For transferability among different models, it can be
clearly illustrated from Table 1 that our proposed defen-
sive patch show higher accuracy values compared with Un-
adv under black-box settings. For example, our proposed
method yields 10.51% improvement on average against
corruptions on RNet.

(3) Besides, we can witness that UnAdv with ensemble
strategy shows lower defending ability compared to the sin-
gle setting. More precisely, ensemble strategies decrease
the performance of white-box and increase that of black-
box on UnAdv. For example, UnAdv show 70.36% on
VGG and 62.55% on RNet against corruptions in the en-
semble setting, while the accuracy on VGG against corrup-
tions is 98.16% under the single model setting. We attribute

5
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Models Methods VGG RNet SNet MNet
Raw Cor AdvL AdvP Raw Cor AdvL AdvP Raw Cor AdvL AdvP Raw Cor AdvL AdvP

Clean 92.67 54.67 80.40 19.99 94.65 51.51 85.65 53.51 92.33 49.71 78.90 43.76 93.65 52.04 84.13 46.76

VGG UnAdv 99.60 94.93 98.64 55.51 81.07 37.15 68.54 27.47 66.32 35.29 55.90 20.50 69.58 35.54 59.06 18.95
Ours 99.98 98.16 99.87 75.41 84.03 39.08 71.08 27.12 69.85 40.08 58.94 20.52 77.64 43.82 68.59 20.04

RNet UnAdv 64.21 37.05 57.50 15.31 99.23 78.83 96.94 74.41 77.35 42.28 65.64 25.61 67.92 32.69 57.60 17.36
Ours 72.44 45.66 66.00 18.39 99.93 90.90 99.50 92.22 83.37 52.33 72.93 29.92 78.45 44.00 68.52 22.62

SNet UnAdv 56.12 31.22 50.12 15.84 87.79 42.84 74.76 28.77 99.56 87.96 97.66 78.72 69.48 33.14 58.41 18.33
Ours 62.30 39.34 57.86 21.28 89.57 47.95 78.14 35.16 99.96 93.06 99.62 89.70 76.41 41.43 66.76 23.58

MNet UnAdv 68.57 39.80 62.02 17.02 84.45 38.95 71.19 25.94 71.76 38.46 59.37 23.54 99.93 90.26 99.50 80.25
Ours 71.16 45.84 65.01 19.48 86.13 43.32 73.64 25.95 74.51 43.75 63.48 21.47 99.99 93.94 99.87 93.04

Table 1. The experimental results under single model setting. Note that we do not compare with Trans [50] in this situation. It can be
observed that “Ours” shows better generalization and transferability. Higher accuracy values are in bold, i.e., better performance.

this observation to the deficiencies of the average ensemble
strategy, i.e., ignoring the exploitation of shared high-level
characteristics such as correlation among global features.

To sum up, our defensive patch generation framework
achieves high generalization and transferability in practi-
cal performance, showing significant accuracy improve-
ments under diverse noises among multiple models, i.e.,
20.18% improvement on average for adversarial robustness
and 31.10% improvement on average for corruption robust-
ness on the mentioned 4 models.

4.3. Physical World Evaluation

To evaluate the effectiveness in the physical world, we
select the traffic sign classification task under the consider-
ation of the popularity of autonomous driving and its huge
potential for applications. Therefore, we generate our de-
fensive patches based on a widely-used traffic sign classi-
fication dataset, i.e., GTSRB, and then print them using an
HP Color LaserJet Professional CP5225 printer.

We choose three different real-world traffic signs from

Noises Methods VGG RNet SNet MNet

Raw
Vanilla 92.67 94.65 93.65 92.33
UnAdv 88.57 95.51 82.00 73.14
Trans 88.84 93.69 90.24 91.31
Ours 99.27 98.82 99.02 99.68

Cor
Vanilla 54.67 51.51 52.04 49.71
UnAdv 70.36 62.55 54.48 36.38
Trans 51.71 51.53 49.15 50.41
Ours 91.02 76.04 83.26 87.37

AdvL
Vanilla 80.40 85.65 78.90 84.13
UnAdv 83.00 88.87 71.79 62.36
Trans 72.71 81.61 73.53 78.65
Ours 97.27 96.04 96.07 98.67

AdvP
Vanilla 19.99 53.51 43.76 46.76
UnAdv 29.24 49.39 31.71 19.80
Trans 33.18 59.52 52.91 53.17
Ours 40.83 70.81 67.67 64.82

Table 2. The experimental results under four models ensemble
setting on CIFAR-10 dataset. Unadv [37] and Trans [50] show
weak defense ability.

the campus environment as shown in supplementary2, i.e.,
speed-limited 20 (denote “SL”), no entry (denote “NE”),
and go straight or left (denote “GSL”). We choose 4 differ-
ent situations (e.g., raw, snow, brightness, adversarial patch)
to simulate the different noises in the real world. Further,
for adversarial attacks, we employ the AdvPatch and stick
them on the traffic sign. For each kind of traffic sign un-
der each situation, we sample images from 3 distances (i.e.,
0.5m, 0.75m, and 1m) and 3 orientations (i.e., front side,
left side, and right side). Regarding the defenses, we use
our defensive patches and UnAdv. Therefore, we obtain
12 ∗ 9 ∗ 3 = 324 images as the physical world test set in
total, including diverse noises (corruptions and adversarial
examples). Furthermore, we evaluate these real-world sam-
pled images by RNet models to validate the practical effec-
tiveness of our proposed method.

According to Table 3, we can observe that under dif-
ferent situations in the real world, our proposed defensive
patches achieve better performance and outperform others
(i.e., Vanilla and UnAdv) by large margins, i.e., higher ac-
curacy values. For all noises, our method achieves 26.86%
improvement on average2.

Besides the above task, it should be noted that the pro-
posed defensive patch generation framework owns the po-
tential to perform defenses in other approaches, e.g., prod-
uct special clothes, camouflages, coating, etc. We generate
some simple examples to demonstrate this viewpoint2.

4.4. Discussion and Analysis

In this section, we first provide some discussions from
the perspectives of model attention (i.e., qualitative anal-
ysis) and decision boundary (i.e., quantitative analysis) to
better understand our defensive patches; then we show that
our defensive patches can be employed with other model-
end strategies to further improve robustness.

4.4.1 Model Attention Analysis

We first adopt Grad-CAM [39] to visualize the attention of
models when making predictions towards the same images
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Figure 3. The model attention analysis. The red frames denote the
examples without defensive patches (i.e., “Before”) and the green
ones denote the examples with defensive patches (i.e., “After”).
The model global perception is better activated. Best in view.

with or without defensive patches.
Specifically, we select some samples from each category

of CIFAR-10 and acquire their corresponding perturbed ex-
amples using noises (i.e., Cor, AdvL, AdvP). These in-
stances satisfy the conditions that vanilla models fail to clas-
sify correctly on these perturbed images whereas they could
provide correct predictions with the help of our defensive
patches. Then we calculate the attention map of each group
of the sampled images to exhibit the model perception vari-
ation by the Grad-CAM [39]. As shown in Figure (3), af-
ter sticking the defensive patches, the model perception has
been spread into a larger region globally over the image,
which indicates that the model exploits more global features
during the decision-making process2. Thus, by better acti-
vating the global perception, our defensive patches could
improve model robustness and transfer among models.

Guide board Class Accuracy
Raw Snowy Brightness AdvP

SL
Vanilla 44.44 44.44 33.33 11.11
UnAdv 33.33 33.33 11.11 22.22
Ours 55.56 55.56 44.44 44.44

NE
Vanilla 88.89 77.78 88.89 44.44
UnAdv 77.78 88.89 88.89 33.33
Ours 100.00 100.00 100.00 66.67

GSL
Vanilla 44.44 33.33 22.22 33.33
UnAdv 44.44 11.11 33.33 33.33
Ours 55.56 66.67 66.67 77.78

Table 3. Physical world experimental results. All images are tested
on ResNet models. “Ours” accuracy value is much higher.
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Figure 4. Decision boundary analysis. (a) The frequency statistics
for the number of average steps. (b) The distance statistics of a
certain class, i.e., distances of class 0 to another 9 classes.

4.4.2 Decision Boundary Study

To further understand our defensive patches, we follow [27]
and provide a decision boundary analysis, which we aim
to characterize the difficulty of fooling a classifier with or
without our defensive patches.

Specifically, we perturb an instance xi to specified
classes and estimate the smallest optimization step numbers
moved as the decision boundary distance. Given a learnt
model F and a direction (i.e., class yj , i 6= j), we opti-
mize the instance until satisfying F(xi) 6= yi by follow-
ing [27]. In detail, we randomly sample 50 examples for
each category (500 in total) and employ RNet as F. By
calculating the statistics (e.g., average and median, etc) of
distances, we can draw some meaningful conclusions from
Figure (4). Firstly, it can be observed that the distribution
of average step number shifts to bigger values after using
our defensive patches (Figure 4a), which indicates that it
is more difficult for adversaries to attack the models (i.e.,
the distance for different instances to decision boundaries
are larger). Moreover, for each specific class, the decision
boundary distances are larger after adding defensive patches
as shown in Figure 4b (e.g., the blue boxes are higher than
the red boxes).

Therefore, we demonstrate that our defensive patches
could help models to better resist the influence of noises,
i.e., more difficult to be perturbed to other categories.

4.4.3 Combination with Other Model-end Defenses

While the data-end defenses are independent to model-end
defenses, it is rational for us to explore the possibility of
jointly exploiting them both to further improve model ro-
bustness against noises.

In particular, we select the typical and popular model-
end defense strategy, i.e., PAT [32], which adversarially
train models with PGD adversarial attacks [32]. We use
VGG, RNet, SNet, and MNet as backbone models and ad-
versarially train them respectively following the PAT strate-
gies. For evaluation, we adopt the same testing dataset as
Section 4. As illustrated in Figure 5, we can clearly observe
the positive effects of the defensive patches, i.e., by adding
our defensive patches with PAT, +29.32% on corruptions,
+23.03% on adversarial noises. These results enable us to
draw a meaningful conclusion that our defensive patches
could serve as a strong method for real-world applications
due to their flexible usage and significant promotion for ro-
bust recognition. Another model-end defense strategy, i.e.,
PatG [48], is also compared2.

4.5. Ablations Studies

In this section, we provide ablation studies to better un-
derstand the effectiveness of different parts of our defensive
patch generation framework.
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Figure 5. The experimental results of working with model-end
defenses. “+Ours” indicates the joint performance and achieves
better performance, i.e., higher accuracy.

Method Noises
Cor AdvL AdvP

Lt 61.73 88.90 46.45
+Lp 71.21 94.35 59.02
Ours 76.04 96.04 68.81

Table 4. Ablations on Lp for
“Cor”, “AdvL”, “AvP” under
ensemble settings.

Method Models
VGG SNet MNet

Lt 27.99 32.37 27.31
+Lc 34.51 43.03 30.19
Ours 46.85 50.35 45.86

Table 5. Ablations on Lc un-
der single model settings for
“Cor”.

Method Models
VGG SNet MNet

Lt 49.56 57.21 51.98
+Lc 53.63 65.41 54.13
Ours 66.80 71.84 71.72

Table 6. Ablation on Lc un-
der single model settings for
“AdvL”.

Method Models
VGG SNet MNet

Lt 13.60 25.62 16.48
+Lc 15.52 25.52 16.60
Ours 18.39 29.92 22.62

Table 7. Ablation on Lc un-
der single model settings for
“AdvP”.

4.5.1 Impact of Different Loss Terms

Here, we first investigate the impacts of the different loss
terms, i.e., Lp and Lc.

Specifically, we first study the impact of the Lp to the
generalization ability against diverse noises. To make it a
fair comparison, we train two models with Lt and Lt+Lp

with the ensemble setting. According to Table 4, we can
observe that the robustness under “Lt+Lp” setting is much
higher than that under Lt setting. The results empirically
prove that Lp could improve model robustness against di-
verse noises.

Then we study the impact of the Lc to the transferability
across different models under the single model setting. In
detail, we select the RNet as the source model and the other
3 models as target models (VGG, SNet, and MNet). As
shown in Table 5, 6, and 7, the “Lt+Lc” always achieves
higher accuracy on almost all target models under differ-
ent noise settings, which strongly support that Lc could im-
prove the transferability between models2.

4.5.2 The Number of Ensemble Models

Since our defensive patch generation framework introduces
the ensemble strategy, it is necessary to investigate the ef-
fects on the number of ensemble models.

2Please refer to the Supplementary Material for more details

Specifically, we adopt different ensemble settings (i.e.,
optimize the defensive patch based on 1, 2, 3, and 4 mod-
els), and keep other settings the same for fair comparisons.
We can summarize the following observations: (1) model
robustness improves with the increasing of ensemble model
numbers; (2) beyond the “white-box” models (i.e., the en-
semble models), our generated patches perform better on
unseen models. Thus, we could conclude that the trans-
ferability between models is benefited from the ensemble
perceptual correlation reinforcement2.

4.5.3 The Shape of the Defensive Patches

Finally, we investigate the performance of defensive patches
with different shapes (i.e., different shape masks M in Equa-
tion (2). Note that, this experiment is designed to test the
defense ability of our patches in more practical scenarios.

Specifically, we handcraft 3 different shape masks, in-
cluding circle, triangle, and trapezoid as shown in Section 3
in Supplementary Material. Note that the sizes (pixel num-
bers) of these patches are set to be similar levels2, which has
no impact on the target object. We generate different de-
fensive patches with different shape masks based on VGG,
ResNet, ShuffleNet, and MobileNet, and then place them
at the same positions and evaluate their performance (i.e.,
Raw, Cor, AdvL, AdvP). According to Table 7 in Supple-
mentary Material, we can conclude that the shape only has
very limited impacts on the performance of the defensive
patches, i.e., 99.78%, 98.87%, 99.93% for circle, triangle,
and trapezoid, respectively (Raw accuracy on VGG), which
can be ignored in real applications2. Therefore, the pro-
posed defensive patch generation framework can be more
flexible in real-world applications for various scenarios.

5. Conclusion
This paper proposes a novel defensive patch generation

framework to conduct data-end defense by better exploit-
ing both local and global features. Our defensive patches
could achieve strong generalization against diverse noises
and transferability among different models. Extensive ex-
periments demonstrate that our defensive patch outperforms
others by large margins (e.g., improve 20+% accuracy for
both adversarial and corruption robustness on average in the
digital and physical world).

Our defensive patches could be easily deployed in prac-
tice to defend noises by simply sticking them around the
target objects (e.g., traffic signs in cities that often snow).
In the future, we are interested in trying more conve-
nient approaches such as employing these patches as a pre-
processing procedure (automatic detecting and sticking the
defensive patch onto the image and then feeding the image
to the system). Moreover, applying this strategy in more
visual tasks, e.g., detection tasks, is also worth attempting.
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