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The supplementary material contains the following parts:
(1) Additional Qualitative Comparison: provide more vi-
sual comparison results on FFHQ [1], LSUN cat, and LSUN
church [7] with regular and irregular holes; (2) Additional
Quantitative Comparison: provide additional quantitative
comparisons on LSUN church; (3) Model Complexity and
Inference Time; (4) User Study; (5) Additional Experiments
on Places2; (6) Additional Ablation Study.

1. Additional Quantitative Comparison
We conduct additional quantitative comparison with

Yeh et al. [5], Lahiri et al. [3], PICNet [10], GC [8] on
LSUN church. The test setting on LSUN church is the
same as that on FFHQ. Four evaluation metrics: relative l1,
Structural Similarity (SSIM), Peak Signal-to-Noise Ratio
(PSNR), and Frechet Inception Distance (FID) are adopted.
The evaluation results on LSUN church are shown in Table
1. It can be seen that our method also outperforms other
methods for all evaluation metrics and all mask ratios.

2. Additional Qualitative Comparison
We conduct qualitative comparison with Yeh et al. [5],

Lahiri et al. [3], PICNet [10], GC [8], CoModGAN [9] on
FFHQ, LSUN church, and LSUN cat with regular and irreg-
ular holes. The comparisons are shown in Figure 5, Figure
6 and Figure 7. Since the face image are already aligned
in FFHQ dataset, it is easy for all methods to learn the
valid information over FFHQ dataset and to generate rela-
tively reasonable results. In LSUN cat and LSUN church
dataset, the images are diverse and complex. Compared
to feed-forward inpainting, GAN inversion inpainting and
our method can generate results with better semantics. For
example, the feed-forward inpainting methods like PICNet
and GC often fail to generate cat faces (e.g., row 1, 4 in Fig-
ure 7), which requires necessary semantic knowledge. In
contrast, in our method, the inversion path can provide use-
ful semantic knowledge for the feed-forward path to gener-
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Mask Yeh et al. [5] Lahiri et al. [3] GC [8] PICNet [10] Ours

` 1
(%

)↓

0-10% 0.69 0.78 0.56 0.60 0.54
10-20% 1.47 1.82 1.36 1.38 1.24
20-30% 2.89 3.23 2.49 2.43 2.22
30-40% 4.11 4.73 3.75 3.58 3.24
40-50% 5.75 6.44 5.21 4.97 4.41
50-60% 8.03 8.99 7.28 7.24 6.11
Ave% 3.82 4.33 3.44 3.37 2.96

SS
IM

↑
0-10% 0.962 0.960 0.967 0.965 0.969

10-20% 0.907 0.899 0.918 0.912 0.921
20-30% 0.835 0.823 0.850 0.846 0.858
30-40% 0.761 0.747 0.779 0.778 0.793
40-50% 0.695 0.668 0.701 0.702 0.723
50-60% 0.593 0.587 0.614 0.607 0.643
Ave% 0.792 0.781 0.805 0.802 0.818

PS
N

R
↑

0-10% 30.958 29.851 31.894 31.711 32.578
10-20% 25.540 24.758 26.215 26.493 27.235
20-30% 22.167 21.717 22.899 23.480 24.148
30-40% 19.975 19.616 20.663 21.412 22.071
40-50% 18.443 17.846 18.900 19.671 20.413
50-60% 16.736 15.789 17.005 17.523 18.567
Ave% 22.303 21.596 22.929 23.383 24.169

FI
D

↓

0-10% 1.11 1.42 0.84 0.98 0.77
10-20% 3.83 4.79 2.59 3.02 2.30
20-30% 9.03 11.58 5.73 6.76 4.92
30-40% 16.44 19.85 10.39 11.99 8.28
40-50% 25.23 29.63 17.19 19.35 12.95
50-60% 27.88 32.83 27.24 29.49 17.81
Ave% 13.92 16.68 10.66 11.93 7.84

Table 1. Quantitative comparison on LSUN church [7].

ate well-structured and semantically meaningful cat faces.
GAN inversion inpainting methods are prone to generate
results having color discrepancies without post-processing.
Our method outperforms other methods on three test sets
with the most reasonable and realistic results.

3. Model Complexity and Inference Time

We compare our model complexity and inference speed
with other baseline methods in Table 3. In Yeh et al. [5],
we optimize 1,000 times to generate the final results. The
model size of StyleGAN2 [2] pretrained model used in
Yeh et al. [5], Lahiri et al. [3] and ours is 30.03M. We de-
note it as ”S” in Table 3 for simplification.

It can be seen that Yeh et al. needs the longest infer-
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`1 (%)↓ SSIM↑ PSNR↑ FID↓

Mask(%) 0-20 20-40 40-60 Ave 0-20 20-40 40-60 Ave 0-20 20-40 40-60 Ave 0-20 20-40 40-60 Ave
HiFill 2.90 5.40 9.32 5.87 27.041 21.653 17.872 22.188 0.889 0.751 0.584 0.741 3.58 16.95 55.44 25.32

MEDFE 1.95 3.26 6.61 3.94 29.564 24.563 19.975 24.701 0.942 0.851 0.698 0.830 2.36 10.79 34.84 16.00
CoModGAN 1.75 3.70 8.03 4.49 29.906 22.599 18.507 23.671 0.945 0.824 0.620 0.796 2.11 6.58 15.85 8.18

Ours 1.58 3.23 6.44 3.75 30.033 24.587 20.223 24.948 0.949 0.857 0.705 0.837 1.83 5.65 14.22 7.24

Table 2. Quantitative comparison on Places2 [11].

Yeh et al. Lahiri et al. GC PICNet CoModGAN Ours
Speed (s/frame) 45 0.088 0.024 0.080 - 0.093

Param. (M) S + 0 S + 4.5 10.0 6.04 109 S + 28.05

Table 3. Comparison of model complexity and inference speed.
“S” is 30.03M, which denotes the model size of pretrained Style-
GAN2.

ence time due to multiple optimizations of the latent code.
Our method has comparable inference speed with Lahiri et
al. [3] and PICNet [10]. Since CoModGAN is tested with
image size of 512, we omit its inference speed. Although
the performance of CoModGAN is similar to ours, it has
the largest model size. We acknowledge that the model size
of our method is larger than other three methods because of
dual-path architecture, but our method can generate more
realistic and reasonable results.

4. User Study
Following [8], we conduct user study on 200 images ran-

domly selected from two datasets, in which each image is
processed with regular or irregular masks. 30 subjects with
basic background in computer vision are invited to rank the
subjective visual qualities of images. We perform three
pairwise comparisons for each baseline with our method:
(1) Our method v.s. Yeh et al., (2) Our method v.s. Lahiri
et al., (3) Our method v.s. PICNet, (4) Our method v.s.
GC. We omit CoModGAN because we can not obtain its
results on LSUN dataset. A total of 200 × 30 = 6, 000
comparisons were conducted for each baseline. The study
shows that 80.10% (4,806 out of 6,000), 85.32% (5,119 out
of 6,000), 82.17% (4,930 out of 6,000), and 82.58% (4,955
out of 6,000) of comparisons preferred our results over Yeh
et al., Lahiri et al., PICNet, and GC, respectively.

5. Additional Experiments on Places2
We have proved the effectiveness of our method on

relatively homogeneous and aligned datasets (e.g., FFHQ,
LSUN) which have complex semantic. However, it is also
necessary to verify our method on diverse domains dataset
like Places2 [11]. Thus, we compare our method with
three methods: HiFill [6], MEDFE [4], CoModGAN [9]
on Places2 . We first train StyleGAN2 model from scratch

Figure 1. Some results randomly generated by StyleGAN2 model
trained from scratch on Places2.

on Places2 for about two weeks and Figure 1 show some re-
sults randomly generated by StyleGAN2 model trained on
Places2.

Table 2 shows our method quantitatively compares with
three methods. The test setting is the same as the FFHQ
in the main text while 10,000 images are randomly selected
for testing. It can be seen that our method is superior to
other methods among all metrics.

We also provide some examples for real inpainting ap-
plication based on our method in Figure 2. In the experi-
ment, we observe that the inversion path can generally pro-
vide useful semantic prior for inpainting on relatively di-
verse dataset like Places2.

Figure 2. Some examples for real inpainting application based on
our method.

6. Additional Ablation Study
In this section, we investigate the effect of the number

of our proposed deformable fusion module layers on the fi-
nal results. We also provide more experiments to prove the
effect of the inversion path on the final results and the anal-
yses of deformable fusion module.



Settings `1 (%)↓ SSIM↑ PSNR↑ FID↓

6-DF 2.16 0.883 28.087 4.05
2-CF and 4-DF 2.17 0.883 28.081 4.07

3-CF and 3-DF (Ours) 2.17 0.882 28.078 4.02
4-CF and 2-DF 2.20 0.879 27.884 4.26
5-CF and 1-DF 2.23 0.856 27.823 4.55

6-CF 2.29 0.870 27.818 4.73

Table 4. Additional ablation studies for the number of deformable
fusion module layers. The setting (c) is our method.

6.1. Additional Experiments on the Number of De-
formable Fusion Module Layers

Since there are six layers in our generator, we let the
layer with the lowest resolution (8 × 8) be the first layer.
We compare with the six following settings: (a) All lay-
ers use deformable fusion (“6-DF”); (b) the first two lay-
ers use concatenation fusion and the last four layers use de-
formable fusion (“2-CF and 4-DF”); (c) the first three lay-
ers use concatenation fusion and the last three layers use
deformable fusion (“3-CF and 3-DF”); (d) the first four lay-
ers use concatenation fusion and the last two layers use de-
formable fusion module layers (“4-CF and 2-DF”); (e) the
first five layers use concatenation fusion and the last layer
use deformable fusion (“5-CF and 1-DF”); (f) All layers use
concatenation fusion (“6-CF”). All the results are tested on
FFHQ datasets and the experimental setup is the same as
Section 4.2 in the main text. Note that setting (c) is ac-
tually our method. The results are summarized in Table
4. Compared with simple concatenation fusion (setting (f)),
our proposed deformable fusion module promotes the final
results. Specially, when the deformable fusion module is
applied to high-resolution (256× 256, 128× 128, 64× 64),
the promotions are apparent, especially on FID (setting (c)
(d) (e)). However, when the deformable fusion module is
applied to lower-resolution (32 × 32, 16 × 16, 8 × 8), the
promotions are limited (setting (a) (b)). Taking accuracy
and efficiency into account, we choose setting (c), which
has the lowest FID, as our final method.

6.2. Additional Experiments on Dual Path

We provide more experiments to prove the effectiveness
of the inversion path on the final results. Figure 3 shows the
visualization comparison between the inversion path and
the feed-forward path. The inversion path network and the
feed-forward path network are trained separately. The re-
sults of inversion path and dual-path in Figure 3 is the out-
puts generated by the inversion path of our method and the
outputs generated by the feed-forward path of our method.
It can be seen the inversion path can provide extra seman-
tic information (e.g., cat face and eyeglasses) for the feed-
forward path and have a positive influence on the final re-
sults. Without the assistance of the inversion path, there are
high chances for single feed-forward path network to gen-

Figure 3. Visualization of Two Path Output. The differences are
highlighted in red boxes. Comparing (b), (c) and (d), we can find
the inversion path provide semantic prior (e.g., cat face and eye-
glasses) assisting for the feed-forward path. Best viewed by zoom-
ing in.

erate poor results. (e.g., Single feed-forward path network
can not restore the cat face.) These results prove that the
inversion path is able to provide extra semantic prior and
improve the inpainting results.

6.3. Analyses of Deformable Fusion Module

In Figure 4, we provide four examples of FFHQ, LSUN
church and LSUN car to verify the effectiveness of de-
formable fusion module. Similar to Sec 3.2 in the main
text, we visualize the outputs at the largest resolution (256
× 256) from two paths. For each example, we select one
point in the feed-forward path as the target point (red point).
We also draw the target point (red point) at the same loca-
tion in the inversion path. By comparing the target points
in two paths, we can clearly see the misalignment issue be-
tween two paths.

Recall that we use 3 × 3 deformable convolution kernel
with learnable offsets and modulations. We visualize the
learnt offsets and modulations of the kernel centering at the
target point in the inversion path. Specifically, we draw the
9 deformed sampling points with the corresponding modu-



Figure 4. Visualization of the effectiveness of deformable fusion
module. The deformable fusion module can attend to the correct
information (e.g., lips in row 1, cat eyes in row 2, buildings in row
3 and cat noses in row 4) in the inversion path. Best viewed by
zooming in.

lations (marked with grey values). It can be seen that our
deformable fusion module can attend to the relevant infor-
mation in the inversion path to avoid the misalignment is-
sue. For example, in row 1, it attends to the lip instead of
the tooth. In row 2, it attends to the cat eye instead of the
cat face. In row 3, it attends to the building instead of the
tree. In row 4, it attends to the cat nose instead of the cat
face. These results demonstrate that our deformable fusion
module can alleviate the misalignment issue and help the
feed-forward path incorporate more compatible information
from the inversion path.
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Figure 5. More visual comparison results on FFHQ [1].



Figure 6. More visual comparison results on LSUN church [7]



Figure 7. More visual comparison results on LSUN cat [7].
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