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1. Efficiency Analysis for Initial Depth Predic-
tion Module

In this section, we describe the network architecture of
our proposed initial depth prediction module (Table 1) and
analyze its time and memory consumption (Table 2). Con-
sidering that regularizing a 3D cost volume with 3D CNN is
an expensive operation, we run the initial depth prediction
module at the coarsest stage to reduce its time and memory
consumption. As shown in Table 2, our initial depth predic-
tion module affects the efficiency slightly.

Output Layer Input Output Size
Cost Volume H/8 × W/8 × D × 32

Conv0 Conv3DBn,S=1,F=8 Cost Volume H/8 × W/8 × D ×8
Conv1 Conv3DBn,S=1,F=8 Conv0 H/8 × W/8 × D ×8
Conv2 Conv3DBn,S=2,F=16 Conv1 H/16 × W/16 × D/2 ×16
Conv3 Conv3DBn,S=1,F=16 Conv2 H/16 × W/16 × D/2 ×16
Conv4 Conv3DBn,S=2,F=32 Conv3 H/32 × W/32 × D/4 ×32
Conv5 Conv3DBn,S=1,F=32 Conv4 H/32 × W/32 × D/4 ×32
Conv6 DeConv3DBn,S=2,F=16 Conv5 H/16 × W/16 × D/2 ×16
Conv7 DeConv3DBn,S=2,F=8 Conv3+Conv6 H/8 × W/8 × D × 8

P Conv3DBn,S=1,F=1 Conv1+Conv7 H/8 × W/8 × D ×1

Table 1. The network architecture of our 3D CNN in initial
depth prediction module. The Conv3DBn layer consists of
a Conv3D module and a BatchNorm module. D represents
the number of depth hypotheses.

Method Time(s) Memory(GB)
w/o IDP 0.16 2.6

Ours 0.19 3.1

Table 2. Ablation study of our proposed initial depth pre-
diction module (IDP) in terms of time and memory con-
sumption.

2. Depth Filter
After obtaining the depth map corresponding to the input

images, we need to filter out the outliers in the depth map

*The first two authors contributed equally. Yuchao Dai is the corre-
sponding author (daiyuchao@gmail.com).
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Figure 1. The depth filter strategy using Eq. 1. Left: the range R1

and R2 of depth values that meet the threshold γ for a same point
P in different views. Right: the range R1 and R2 of depth values
that meet the threshold γ for different points P1 and P2 in a single
view.

and then fuse the filtered depth maps to 3D point clouds.
Considering that the depth filter algorithms have a great im-
pact on the quality of the final point clouds, most previ-
ous MVS works apply geometric constraints [4] to filter the
outliers, and some recent works use a dynamic consistency
check algorithm [5] to maintain a more reliable and accurate
depth value. An important filter strategy in these algorithms
is to compare the reprojected depth map Ds with the refer-
ence depth map Dr:

||Ds −Dr||/Dr < γ, (1)

where γ is a constant threshold. However, as shown in
Fig. 1, since the range of Dr is between dmin and dmax,
the filter method is unfair to different depth values under a
fixed threshold. Specifically, for a same point P in different
views, the depth filer method using Eq. 1 will set different
sizes of depth ranges that meet the threshold. Meanwhile,
for different points Pi in a single view, Eq. 1 will also set
different sizes of depth ranges that meet the threshold.

To address the above problems, we make some improve-
ments on the basis filter method [4], so that the sizes of
depth ranges that meet the threshold will be not be affected
by the change of Dr:

||Ds −Dr|| < τ, (2)
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where τ is a constant depth determined by the depth
range of each image of the scene. For the input im-
age {I0...IN−1} of the scene and the corresponding depth
ranges {[d0min, d

0
max]...[d

N−1
min , dN−1

max ]}, we set:

τ = λ

∑N−1
i=0 (dimin + dimax)

2N
, (3)

where λ is the weight parameter that can be adjusted. We
verify the proposed depth filter method on the DTU’s eval-
uation set [1]. In addition, we also utilize the reprojected
coordinate error to filter the depth map [4]. As shown in
Table 3, our proposed depth filter achieve improved perfor-
mance in terms of accuracy and overall.

Honestly, due to the influence of background depth
value, calculating threshold based on the depth range of all
views may not be an excellent solution. In the future, we
plan to study more robust depth filtering methods.

Geometric Constrain [4] Our Method
Method Acc. Comp. Overall. Acc. Comp. Overall.

Ours(Iters: 3 3 3) 0.332 0.312 0.322 0.321 0.313 0.317
Ours(Iters: 1 1 1) 0.328 0.332 0.330 0.314 0.334 0.324

Table 3. Ablation study of our proposed depth filter method
in term of distance metric(mm) on DTU’s evaluation set [1]

3. Numbers of Depth Hypotheses for Local
Cost Volume

The local cost volume is the most important part of dy-
namic cost, because it can provide local geometric informa-
tion based on the sampled depth hypotheses. Specifically,
the number of depth hypotheses determine the search range
when extracting the geometric information. In this section,
we conduct ablation experiments with numbers of depth hy-
potheses for local volume construction on DTU’s evaluation
set [1]. It is worth noting that the numbers of depth hy-
potheses are same at different stages. In addition, when the
number of depth hypothesis is set to 1, the local cost volume
can only represent the geometric information based on the
current depth map [2]. As shown in Table 4, we observe a
performance drop when the number of depth hypotheses is
1 or 2. Meanwhile, when the number is greater than 4, the
performance of our method does not further improve with
the increase of the number of depth hypotheses. This shows
that our method can extract enough local geometric infor-
mation from a very thin cost volume, which is one of the
reasons why our method is very efficient.

4. Visualization of Point Clouds
We visualize the reconstructed point clouds from DTU’s

evaluation set [1] and Tanks & Temples dataset [3] in Fig. 2,
3.

Number Acc.(mm) Comp.(mm) Overall(mm)
1 0.318 0.418 0.368
2 0.316 0.328 0.322
4 0.321 0.313 0.317
6 0.324 0.310 0.317
8 0.325 0.311 0.318

Table 4. Ablation study of the number of depth hypotheses
on DTU’s evaluation set [1].
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Figure 2. Reconstruction results on DTU’s evaluation set [1].
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Figure 3. Reconstruction results on Tanks & Temples dataset [3].
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