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1. Quantitative Results on Different Motions

In Table 2 of our main paper, we show that our method
outperforms the state-of-the-art methods: Mo?Cap? and
rR-egopose. In order to further compare the performance
on different types of motions, we show the quantitative
comparisons on Wang et al. [7]’s test dataset in Table 1
and on M02Cap2 dataset [9] in Table 2. We show that our
method outperforms all of the baselines on most types of
motion in these results. Note that our method is trained on
the EgoPW dataset while the focal length and distortion of
the fisheye camera in the EgoPW dataset is different from
the fisheye camera used in Mo?Cap?, which affects the per-
formance of our method on the Mo2Cap? test dataset.

Method MoZCap? zR-egopose Ours
walking 69.68 84.20 59.65
running 77.88 76.78 63.84
crouching 63.28 96.86 68.87
boxing 79.37 85.74 72.91
dancing 82.65 94.23 65.21
stretching 117.7 119.9 108.8
waving 53.14 72.66 44.57
playing balls 60.95 95.30 56.54
open door 55.88 71.70 49.06
play golf 113.8 94.41 94.29
talking 53.93 78.10 51.82
shooting arrow 67.07 76.75 60.71
sitting 83.24 69.10 65.06
total (mm) 74.46 87.20 64.87

Table 1. The BA-MPJPE of different types of motions on the test
set of Wang et al. [7]. Our approach outperforms Mo”Cap? results
by 9.59 mm and outperforms xR-egopose results by 22.33 mm.

2. Qualitative Results

In this section, we show more qualitative results for the
in-the-wild images from the test sequence of either EgoPW

Weipeng Xu?

Christian Theobalt'-?
2Saarland Informatics Campus
{jianwang, 1liu, ksarkar,theobalt}@mpi-inf.mpg.de

Kripasindhu Sarkar'-2

3Facebook Reality Labs

xuwelpeng@fb.com

in Figure 1 or Mo?Cap? in Figure 2. These results show
that our method significantly outperforms the state-of-the-
art methods especially when the body parts are occluded.

3. Details and Comparisons of EgoPW dataset

The details of the EgoPW dataset and comparisons be-
tween EgoPW and other 3D pose estimation datasets are
shown in Table 3. Our dataset contains 97 sequences and
318k frames in total, which is performed by 10 actors in
20 clothing styles. The actions in the EgoPW dataset in-
clude reading magazine/newspaper, playing board games,
doing a presentation, walking, sitting down, using a com-
puter, calling on the phone, drinking water, writing on the
paper, writing on the whiteboard, making tea, cutting veg-
etables, stretching, running, playing table tennis, playing
baseball, climbing floors, dancing, opening the door, and
waving hands.

To synchronise the egocentric camera and external cam-
era setting, we use a mobile phone screen observed from
both cameras plays a video of mostly black frames, but with
a single white frame every 10 seconds. We start record-
ing from both cameras and wait until the white frame is
observed. We use this white frame to temporally synchro-
nise the egocentric and external recordings. We further ver-
ify the synchronization with movements of clapping hands.
The calibration is only done once at the start of the data
recording.

In Table 3, we further compare our EgoPW dataset with
other datasets for external-view 3D pose estimation and
egocentric view 3D pose estimation. Mo?Cap? [9] and
xR-egopose [5] provide large synthetic datasets for train-
ing the egocentric pose estimation networks. However,
these datasets are synthesized and thus suffer from the do-
main gap with the real images. Mo?Cap?, xR-egopose
and Wang et al. [7] also provide small test sequences with
ground truth labels obtained with the mocap system. How-
ever, this dataset is not sufficient for training an egocen-



Indoor walking  sitting crawling crouching boxing dancing stretching waving total (mm)
Mo?Cap? 38.41 70.94 94.31 81.90 48.55 55.19 99.34 60.92 61.40
zR-egopose  37.35 64.45 87.41 69.68 45.19 54.76 90.89 49.41 55.43
Ours 40.23 60.22 70.88 62.40 49.89 52.41 82.48 59.60 54.78
Outdoor walking sitting crawling crouching boxing dancing stretching waving total (mm)
Mo*Cap” 63.10 8548  96.63 92.88 96.01  68.35 12356 6142 80.64
zR-egopose  62.01 103.45 86.53 80.43 90.48 66.06 117.55 67.49 78.30
Ours 58.06 94.19 85.50 77.61 83.91 62.56 111.9 65.37 74.55

Table 2. The BA-MPJPE of different types of motions on the indoor and outdoor sequence of Mo®Cap? dataset [9]. In the indoor sequence,
our method improves the Mo?Cap? [9] results by 6.62 mm and zR-egopose results by 0.65 mm; In the outdoor sequence, our method
improves the Mo?Cap? [9] results by 6.09 mm and zR-egopose results by 3.75 mm.
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Figure 1. Qualitative comparison between our method and the state-of-the-art methods on the test images of the EgoPW dataset. From
left to right: input image, Mo?Cap? result, zR-egopose result, our result, and external image. Note that the external images are only for

visualization and they are not used for predicting the pose.

tric pose estimation network. Our dataset contains a large
amount of in-the-wild images with accurate pseudo labels
generated with an optimization framework, which facili-
tates training the pose estimation network with in-the-wild
images.

The publicly available large datasets for 3D pose estima-
tion from an external view, like Human 3.6M [2] and MPI-
INF-3DHP [3], are all collected in the studio with a multi-
view mocap system. This capturing method is not able to
obtain in-the-wild images and the interactions between the
human body and the environment. 3DPW [6] is a dataset
collected in the in-the-wild scenes with pseudo labels ob-
tained from a moving camera and an IMU system. This
capturing method provides accurate pseudo labels for body
pose with various interactions between the human body and
the environment. However, this dataset only contains 51k
frames, which is less than the frames in our EgoPW dataset.
All of the aforementioned datasets do not contain any ego-
centric images and thus cannot be used for training the ego-
centric pose estimation networks.

4. Network Architecture

In this section, we describe the architecture of the pose
estimation network and domain classifier network used in
our method.

4.1. Pose Estimation Network

We use the architecture in Mo?Cap? [9] for obtaining
the 3D poses and 2D heatmaps. The pose estimation net-
work contains a 2D module for the full-body heatmap, a
2D module for zoomed-in body heatmap, and a 3D mod-
ule. The 2D module for full-body pose can be represented
as an encoder-decoder network, which first gets the features
Fruop with a Resnet-50 network [1] as the encoder and
uses the features Fr,2p to predict the full-body heatmap
with convolutional layers. The 2D module for zoomed-
in body heatmaps has the same architecture as the former
one. It takes the zoomed-in egocentric images as input and
first generates features Fz,om2p and predicts zoomed-in
heatmaps from the intermediate features. The full-body
heatmaps and zoomed-in heatmaps are finally averaged to
get the final prediction of heatmaps H. The distance module
takes the features from both the aforementioned 2D mod-



Input Mo?2Cap? xR-egopose Ours

& -}‘;

. 4 “

A 1

.'- :

A ot
7 »

17 ~</| ]
= f [/

o T o

‘ / =l
X \ //
} ¢
A~ ,i
i . -

. - Sy
Lty s
v A e |
» f T

. 14
< o P
Input Mo?Cap? xR-egopose Ours

Figure 2. Qualitative comparison between our method and the state-of-the-art methods on the test images of Mo?Cap® work. From left to

right: input image, Mo>Cap? result, zR-egopose result, and our result.

Dataset Name Frames Sequences Subjects Context Action Types
Human 3.6M [2] 3.6M 1376 11 Studio 17
MPI-INF-3DHP [3] 1.3M 64 16 Studio 8
3DPW [6] 51k 60 18 In the wild 8
Mo2Cap2 [9] 530k - 700 Synthetic 3000
Mo2Cap2-test 5591 2 2 Studio & in the wild 8
xR-egopose [5] 383k - - Synthetic 9
xR-egopose-test 10k - 3 Studio 6
Wang et al. [7] 47k 19 9 Studio 13
EgoPW 318k 97 10 In the wild 20

Table 3. Comparison between the EgoPW dataset and publicly available 3D pose estimation datasets.

ules as input and predicts the distances D between body
joints and the camera. More details about the pose estima-
tion network can be found in Mo?Cap? [9].

4.2. Domain Classifier I'

The domain classifier takes the intermediate features
Frunop with shape 2048 x 8 x 8 or Fz,omep With shape
2048 x 8 x 8 as input and predicts whether the input feature
is from synthetic or real image. The network contains two
Resnet “bottleneck” blocks [1] with 1024 and 256 output
channels and one final classification block. The classifica-
tion block contains two convolutional blocks and a linear
layer for the domain classification task. The first convo-
lutional block contains one 2D convolutional layer (kernel
size=4, stride=2, and padding=1), one batch norm layer,
and one relu layer. The second convolutional block con-
tains one 2D convolutional layer (kernel size=3, stride=2,
and padding=1), one batch norm layer, and one relu layer.
The output features of the convolutional blocks are sent to
the linear layer giving the domain label prediction.

4.3. Egocentric-external View Classifier A

Similar to the domain classifier for distinguishing syn-
thetic and real images, the egocentric-external view classi-
fier also takes the intermediate features J ;0 p With shape
2048 x 8 x 8 or Fzoom2p With shape 2048 x 8 x 8 as input
and predicts whether the input feature is from the egocentric
view or the external view. The network contains two convo-
lutional blocks, one global average pooling layer, and one fi-
nal classification block. The intermediate features are firstly
sent to the convolutional blocks and then generate features
with shape 1024 x 8 x 8. The spatial dimension of the fea-
tures is eliminated with a global average pooling layer [10]
to generate a feature vector with length 1024. Next, the
feature vector is sent to the final classification block to pre-
dict whether the input feature is from the egocentric view or
the external view. Each of the convolutional blocks consists
of one 2D convolutional layer (output channel=1024, kernel
size=3, stride=2, and padding=1), one batch norm layer, and
one relu layer. The classification block includes one fully



connected layer (output dimension=256), one batch norm
layer, one relu layer, and one final fully connected layer
(output dimension=2) which predicts the labels of egocen-
tric/external views.

5. Fisheye Camera Model

In this section, we describe the fisheye camera model
used in our method. The projection of a 3D point [z, y, 2]*
into a 2D point [u, v]” on fisheye images can be written as:

o] = 2 () (1)

where p = arctan(z/+/2% + y?) and f(p) = ap + a1p +
anp? + azp® + ... is a polynomial obtained from camera
calibration.

Given a 2D point [u,v]* on the fisheye images and the
distance d between the 3D point and the camera, the posi-
tion of the 3D point [x,y, 2]7 can be written as:

[u, v, f'(0")]"
T Ve ()P
where p' = Vu2 +v2 and f'(p) = af + ajp + abp® +
alp3+. .. is another polynomial obtained from camera cal-
ibration. The calibration of the fisheye camera and more de-
tails about the fisheye camera model are described in Scara-
muzza et al. [4].

T

[,y,2]" 2)

6. Energy Function

In this section, we describe some of the terms in our ob-
jective function (Eq. 3).
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In this function, E%™, ES", Ec, and E) are the exter-
nal reprojection term, external 3D pose regularization term,
camera pose consistency term, and camera matrix regular-
ization term respectively which have already been described
in the paper. E/°, E’°,Er, and Ep are the egocentric
reprojection term, egocentric pose regularization term, mo-
tion smoothness regularization term and bone length reg-
ularization term, which are the same as the corresponding
terms in [7]. We also depict these terms here:

Heatmap-based Reprojection: With this term, we maxi-
mize the summed heatmap values at the reprojected 2D joint
positions:

Er(Py) = Z IHM, (TL(P7)) I @)

where HM;(.) returns the value at a pixel on H:9°, the
heatmap of i-th frame. TI(.) refers to the projection of a
3D point with the fisheye camera model.

Pose Regularization: The pose regularizer is defined to

constrain the optimized pose P;7° to stay close to the initial
pose P97,
B (Pity. Piy) Z [P =P o)

Motion Smoothness Regularization: In this term, we
constrain the acceleration of each joint over the whole se-
quence to improve the temporal stability of the estimated
poses:

I Sl T T
1=2
where VP9 = P97 — prog.
Bone Length Regularization: In this term, we calculate

the difference between the bone length and the average bone
length to enforce the length of each bone to be consistent.

B
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where the Lpiego is the length of each bone of 3D pose

Poe.
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7. Licenses
In our paper, we have used three available assets:
» Synthetic and test dataset in M02Cap2 [97;
* Test dataset from Wang et al. [7];

e Pretrained 2D pose estimation network from Xiao et
al. [8].

7.1. License for Synthetic and Test Dataset in
Mo?Cap?

Copyright (c) 2017 MPI for Informatics

Permission is hereby granted, free of charge, to any per-
son or company obtaining a copy of this software, dataset
and associated documentation files (the ”Software”) from
the copyright holders to use the Software for any non-
commercial purpose. Methods and models that make use
of the provided Software in any way can only be used for
non-commercial purposes. Publication, redistribution and



(re)selling of the Software, of modifications, extensions,
and derivatives of it, and of other Software containing por-
tions of the licensed Software, are not permitted. The Copy-
right holder is permitted to publically disclose and advertise
the use of the Software by any licensee. The above is sub-
ject to the following conditions:

The above copyright notice and this permission notice
shall be included in all copies or substantial portions of the
Software, as well as any Software including substantial por-
tions of the Software.

If the Software is used, the licensee is required to cite the
use of the following publications in any documentation or
publication that results from the work:

[1] Weipeng Xu, Avishek Chatterjee, Michael Zollhoe-
fer, Helge Rhodin, Pascal Fua, Hans-Peter Seidel, Christian
Theobalt. Mo2Cap2: Real-time Mobile 3D Motion Capture
with a Cap-mounted Fisheye Camera. IEEE TVCG Proc.
VR 2019.

THE SOFTWARE IS PROVIDED ”AS IS”, WITHOUT
WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WAR-
RANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPY-
RIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
DAMAGES OR OTHER LIABILITY, WHETHER IN
AN ACTION OF CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION WITH
THE SOFTWARE OR THE USE OR OTHER DEALINGS
IN THE SOFTWARE.

7.2. License for Test Dataset from Wang et al.

Copyright (c) 2017 MPI for Informatics

Permission is hereby granted, free of charge, to any per-
son or company obtaining a copy of this software, dataset
and associated documentation files (the ”Software”) from
the copyright holders to use the Software for any non-
commercial purpose. Methods and models that make use
of the provided Software in any way can only be used for
non-commercial purposes. Publication, redistribution and
(re)selling of the Software, of modifications, extensions,
and derivatives of it, and of other Software containing por-
tions of the licensed Software, are not permitted. The Copy-
right holder is permitted to publically disclose and advertise
the use of the Software by any licensee. The above is sub-
ject to the following conditions:

The above copyright notice and this permission notice
shall be included in all copies or substantial portions of the
Software, as well as any Software including substantial por-
tions of the Software.

If the Software is used, the licensee is required to cite the
use of the following publications in any documentation or
publication that results from the work:

[1] Jian Wang, Lingjie Liu, Weipeng Xu, Kripasindhu
Sarkar, and Christian Theobalt. Estimating egocentric 3d
human pose in global space. ICCV, 2021.

THE SOFTWARE IS PROVIDED ”AS IS”, WITHOUT
WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WAR-
RANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPY-
RIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
DAMAGES OR OTHER LIABILITY, WHETHER IN
AN ACTION OF CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION WITH
THE SOFTWARE OR THE USE OR OTHER DEALINGS
IN THE SOFTWARE.

7.3. License for Pretrained 2D Pose Estimation Net-
work from Xiao et al.

MIT License

Copyright (c) Microsoft Corporation.
served.

Permission is hereby granted, free of charge, to any per-
son obtaining a copy of this software and associated doc-
umentation files (the ”Software”), to deal in the Software
without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons
to whom the Software is furnished to do so, subject to the
following conditions:

The above copyright notice and this permission notice
shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED ”AS IS”, WITHOUT
WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WAR-
RANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPY-
RIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
DAMAGES OR OTHER LIABILITY, WHETHER IN
AN ACTION OF CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION WITH
THE SOFTWARE OR THE USE OR OTHER DEALINGS
IN THE SOFTWARE

All rights re-
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