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A. Details of Probability Model

The transition probability in one-step for ¢-th sample and
j-th anchor as follows,
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Then we can easily obtain that
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Therefore M(®) = ZTA~1Z where A;; = Z?zl Z;;. tis

easy to prove that M(?) is a doubly stochastic matrix where
satisfies the following three properties:
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e 1™™M® =1and M@1 =1;

o M) = M(2)T.

Hence we can do spectral clustering on M(?) to get cluster-
ing labels which can run k-means on rank-k right singular
vector of Z [2].

Theorem 1 The right singular vectors of Z is the same as
the eigenvectors of Z' A~ Z.

Proof 1 Suppose the singular value decomposition (SVD)
of Z isZ = USVT, we can easily see that Z'A~'Z =
VX TAYEV T, Therefore, the right singular vector of Z is
the same as the eigenvectors of Z' A~'Z. This completes
the proof.

According to the Theorem 1, we can conclude that the
spectral embedding can be obtained by performing SVD on
the consensus anchor graph Z which only needs O(nk?)
instead of existing O(n?).

B. Convergence

The evolution of objective values on other five datasets
are shown in Figure. 1. From these experiments, we ob-
serve that the objective values of our algorithm monotoni-
cally decrease at each iteration. These results clearly verify
our algorithm’s convergence.
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Figure 1. The objective of our proposed method on other bench-
mark datasets.

C. Technical Details

In the optimization process, some subproblems can be
written as follows,

mFg,xTr(FTU) st. FTF =1, 3)

The optimum of F can be analytically obtained by
Theorem 2. We offer an alternative proof for the optimum
to solve the subproblem.

Theorem 2 Suppose that the matrix U in Eq. (3) has
the rank-k truncated singular value decomposition form as
U = SkEkV,I, where Sy, € RnXk, Y € Rka,Vk S
REXE - The optimization problem in Eq. (3) has a closed-
form optimum as follows,

F=S,V], 4)

Proof 2 By taking the the singular value decomposition
that U = SEVT, the Eq. (3) could be rewritten as,

Tr(F'SEV") = Tr(V'F'SE) = Tr(QX), (5)

where Q = VTFTS, we have QQT = V'FTSSTFV =
I,. We can obtain that Tr(V'FTSE) = Tr(QX) <
Zle o;. Hence the optimum in Eq. (3) can be reached
by the solution given as Eq. (4). In machine learning and
computer vision community, Eq. (3) is called Orthogonal
Procrustes Analysis which has been well studied in litera-
ture [1, 3]. Its optimum has also been provided in [1, 3].
Interested readers can read [ 1, 3] for other proofs.



D.

Detailed Experimental Results

In this section, we provide more experimental results on

benchmark datasets in the following pages.

Performance on complete NUS-wide:

Table 1. Performance on complete NUS-wide

Dataset ACC NMI Purity F-score
Nus-wide | 22.46 1642 26.62 16.48
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Figure 2. The clustering results of NMI metric on benchmark datasets with different incomplete ratios. Only ours can run YoutubeFace so
it is omitted.
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Figure 3. The clustering results of Purity metric on benchmark datasets with different incomplete ratios. Only ours can run YoutubeFace
so it is omitted.
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Figure 4. The clustering results of F-score metric on benchmark datasets with different incomplete ratios. Only ours can run YoutubeFace
so it is omitted.



