Hybrid Relation Guided Set Matching for Few-shot Action Recognition
Supplementary Materials

Xiang Wang1 Shiwei Zhang2* Zhiwu Qing1 Mingqian Tang2 Zhengrong Zuo1
Changxin Gao1 Rong Jin2 Nong Sang1*
1Key Laboratory of Image Processing and Intelligent Control, School of Artificial Intelligence and Automation, Huazhong University of Science and Technology
2Alibaba Group

\{wxiang,qzw,zhrzu,oq,cgao,nsang\}@hust.edu.cn, \{zhangjin.zsw,mingqian.tmq,jinrong.jr\}@alibaba-inc.com

Table 1. Performance comparison with different relation modeling paradigms on SSv2-Full and Kinetics.

<table>
<thead>
<tr>
<th>Setting</th>
<th>Dataset</th>
<th>1-shot</th>
<th>5-shot</th>
</tr>
</thead>
<tbody>
<tr>
<td>Support-only</td>
<td>SSv2-Full</td>
<td>52.1</td>
<td>67.2</td>
</tr>
<tr>
<td>Support&Query (ours)</td>
<td>SSv2-Full</td>
<td>54.3</td>
<td>69.0</td>
</tr>
<tr>
<td>Support-only</td>
<td>Kinetics</td>
<td>73.4</td>
<td>85.5</td>
</tr>
<tr>
<td>Support&Query (ours)</td>
<td>Kinetics</td>
<td>73.7</td>
<td>86.1</td>
</tr>
</tbody>
</table>

A. Splits of Epic-kitchens

Epic-kitchens \cite{5} is a large-scale first-view dataset and contains diverse unedited object interactions in kitchens. In our experiment, we divide the dataset according to the verbs of the actions.

Note that there is no overlap between the meta-training set and the meta-testing set.

B. Other relation modeling forms

Previous few-shot image classification methods of learning task-specific features have also achieved promising results \cite{11,20}. However, many of them use some complex and fixed operations to learn the dependencies between images, while our method is greatly simple and flexible. Moreover, most previous works only use the information within the support set to learn task-specific features, ignoring the correlation with query samples. In our hybrid relation module, we add the query video to the pool of inter-relation modeling to extract relevant information suitable for query classification. As illustrated in Table 1, we try to remove the query video from the pool, \textit{i.e.,} Support-only, but we can observe that after removing the query video, the performance of 1-shot and 5-shot on SSv2-Full reduces by 2.2% and 1.8%, respectively. There are similar conclusions on the Kinetics dataset. This evidences that the proposed hybrid relation module is reasonable and can effectively extract task-related features, thereby promoting query classification performance.

* Corresponding authors.
C. Class improvement

In order to further analyze the performance improvement of each action category, we compare the improvement of the proposed set matching metric and HyRSM compared to the baseline on SSv2-Full, as depicted in Figure 1. For the set matching metric, some action classes have limited improvements, e.g., "pretending to open something without actually opening it", whereas some action classes have more than 20% improvement, e.g., "tipping something over" and "showing something next to something". For our HyRSM, the improvement of each category is more evident than the set matching metric. In particular, "pulling something from left to right" and "pushing something from right to left" do not have significant increases in set matching metric but increase by more than 25% in HyRSM. This suggests that the hybrid relation module and the proposed set matching metric are strongly complementary.

D. Visualization analysis

To further demonstrate the effectiveness of our proposed hybrid relation module, we visualize the similarity maps of features before and after the hybrid relation module in HyRSM in Figure 2. The results indicate that the features are improved significantly after refining by the hybrid relation module. In addition, to qualitatively evaluate the proposed HyRSM, we compare the class activation maps visualization results of HyRSM to the competitive OTAM [1]. As shown in Figure 3 and Figure 4, the features of OTAM usually contain non-target objects since it lacks the mechanism of learning task-specific embeddings for feature adaptation. In contrast, our proposed HyRSM processes the query and support videos with adaptive relation modeling operation, which allows it to focus on the different target objects.

E. Relation modeling operations

In the literature [3, 8, 10, 14–17], there are many alternative relation modeling operations, including multi-head self-attention (MSA), Transformer, Bi-LSTM, Bi-GRU, etc.

Multi-head self-attention mechanism operates on the triple query Q, key K and value V, and relies on scaled dot-product attention operator:

$$\text{Attention}(Q; K; V) = \text{softmax}(\frac{QK^T}{\sqrt{d_k}})V$$ \hspace{1cm} (1)

where d_k is a scaling factor equal to the channel dimension of key K. Multi-head self-attention obtains h different heads and each head computes scaled dot-product attention representations of triple (Q, K, V), concatenates the intermediates, and projects the concatenation through a fully connected layer. The formula can be expressed as:

$$\text{head}_i = \text{Attention}(QW_i^q; KW_i^k; VW_i^v)$$ \hspace{1cm} (2)

$$\text{MSA}(Q; K; V) = \text{concat}(_i(\text{head}_i))W_v^v, 1 \leq i \leq h.$$ \hspace{1cm} (3)

where the W_i^q, W_i^k, W_i^v and W_v are fully connected layer parameters. Finally, a residual connection operation is employed to generate the final aggregated representation:

$$f_{msa} = \text{MSA}(f; f; f) + f$$ \hspace{1cm} (4)

where f comes from the output of the previous layer. Note that query, key and value are the same in self-attention.

Transformer is a state-of-the-art architecture for natural language processing [4, 6, 14]. Recently, it has been widely used in the field of computer vision [2, 7, 18, 19] due to its excellent contextual modeling ability, and has achieved significant performances. Transformer contains two sub-layers: (a) a multi-head self-attention layer (MSA), and (b) a feed-forward network (FFN). Formulaic expression is:

$$f_{\text{transformer}} = FFN(f_{msa}) + f_{msa}$$ \hspace{1cm} (5)

where FFN contains two MLP layers with a GELU non-linearity [9].

Bi-LSTM is a bidirectional extension of the Long Short-Term Memory (LSTM) with the ability of managing variable-length sequence inputs. Generally, an LSTM consists of three gates: forget gate, input gate and output gate. The forget gate controls what the existing information needs to be preserved/removed from the memory. The input gate makes the decision of whether the new arrival will be added. The output gate uses a sigmoid layer to determine which
Figure 3. Visualization of class activation maps (Cam) with Grad-CAM [13] on SSv2-Full. Corresponding to: original RGB images (left), Cam of OTAM [1] (middle) and Cam of HyRSM (right).
Figure 4. Visualization of class activation maps (Cam) with Grad-CAM [13] on Kinetics. Corresponding to: original RGB images (left), Cam of OTAM [1] (middle) and Cam of HyRSM (right).
part of memory attributes to the final output. The mathematical equations are:

\[
 f_t = \sigma(W_{f_t}[h_{t-1}] + W_{f_t}[x_t] + b_f)
\]

\[
 i_t = \sigma(W_{i_t}[h_{t-1}] + W_{i_t}[x_t] + b_i)
\]

\[
 c_t = \tanh(W_{c_t}[h_{t-1}] + W_{c_t}[x_t] + b_c)
\]

\[
 o_t = \sigma(W_{o_t}[h_{t-1}] + W_{o_t}[x_t] + b_o)
\]

\[
 h_t = o_t \cdot \tanh(c_t)
\]

where \(f_t \) is the value of the forget gate, \(o_t \) is the output result, and \(h_t \) is the output memory. In Bi-LSTM, two LSTMs are applied to the input and the given input data is utilized twice for training (i.e., first from left to right, and then from right to left). Thus, Bi-LSTM can be used for sequence data to learn long-term temporal dependencies.

Bi-GRU is a variant of Gated Recurrent Unit (GRU) and have been shown to perform well with long sequence applications \([12, 21]\). In general, the GRU cell contains two gates: update gate and reset gate. The update gate \(z_t \) determines how much information is retained in the previous hidden state and how much new information is added to the memory. The reset gate \(r_t \) controls how much past information needs to be forgotten. The formula can be expressed as:

\[
 z_t = \sigma(W_z[x_t] + U_z[h_{t-1}] + b_z)
\]

\[
 r_t = \sigma(W_r[x_t] + U_r[h_{t-1}] + b_r)
\]

\[
 \tilde{h}_t = g(W_h[x_t] + U_h[(r_t \cdot h_{t-1})] + b_h)
\]

\[
 h_t = (1 - z_t) \cdot h_{t-1} + z_t \cdot \tilde{h}_t
\]

where \(x_t \) is the current input and \(h_t \) is the output hidden state.

References

