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A. Overview

As discussed in the paper, our EqGAN-SA also enables
the interactive spatial editing of the output image. We build
an interactive interface to better visualize this property, as
illustrated in the demo video. In the appendix, we provide
the following content. Sec. B includes the implementation
details. Sec. C provides a description of the demo video,
while Sec. D provides more ablation studies and analysis.
Sec. E consists of the discussion on the validity of the
disequilibrium indicator DI, our comparison to the methods
of GAN manipulation, and some other discussions on
manipulation.

B. Implementation

Training. We run the experiments on a computing cluster
using a environment of PyTorch 1.8.1 and CUDA 9.0.
For the convenience of reproducibility, we use the official
PyTorch implementation of StyleGAN2 as our codebase.
All the experiments follow the configuration of ‘paper256’
in the codebase. Specifically, we use the Adam optimizer
with a learning rate of 2.5 × 10−3. The minibatch size is
64 and the group size for the minibatch standard deviation
layer is 8. The depth of the mapping network is 8. For all
the datasets, we set the R1 regularization weight γ as 1. We
also adopt mixed-precision training for a speedup.
Architecture of SELconcat. Same as its counterpart,
SELconcat first uses a convolutional layer to extract features
from the input heatmap, with a dimension of 64. It then
concatenates the extracted features with the input feature
map. Two convolutional layers are used after concatenation,
with an intermediate dimension of 256. Similarly, SELconcat

adopts a residual connection, and employs another convo-
lutional layer for post-processing. All the convolutional
layers use a kernel size of 3× 3.

C. Interactive Editing

Although our method is proposed to improve GAN equi-
librium and enhance image synthesis quality, it addition-

ally supports a hierarchical manipulation on the generated
image. The Fig. 5 and Fig. 6 of the main paper have
shown this property. For better illustration, we provide
an interactive interface for EqGAN-SA and show it in the
demo video. Specifically, given a well-trained EqGAN-
SA model, the ‘Reset’ button will randomly sample a
latent code, and generate an image using the default spatial
heatmaps. Users can move heatmap centers through drag-
ging. The movement of centers updates the heatmaps in
real time, shown in the second column from right. From
top to down, the heatmaps correspond to 4 × 4, 8 × 8, and
16 × 16 feature resolution, i.e., level 0, 1, 2. Once setting
the heatmaps, the users can click on the button ‘Generate’
to produce an image with the unchanged latent code and
moved heatmaps. They can also click the ‘auto’ button
under ‘Generate’, which enables automatic generation after
each heatmap movement. Please note the level 1 and level 2
centers would automatically move with level 0 center, due
to the design of hierarchical sampling.

In the demo video, we can see how the church tower
reacts with heatmap moving, and how EqGAN-SA tries
to produce high-quality results even under some extreme
cases. We also observe that controlling a level 2 heatmap
center can lead to a result like ‘shaking’ the ear of a cat.
Besides the interface, we provide more dynamic samples in
the end of the demo to show such manipulation is valid for
diverse cases.

D. Ablation Study and Analysis

Hyper-parameters for Heatmap Sampling. As men-
tioned in the paper, we heuristically use two sub-heatmaps
in the 8 × 8 feature resolution and four sub-heatmaps in
16 × 16. Here we provide an ablation study in Tab. 1
to show this setting is effective on the LSUN Cat dataset.
In addition, though other settings may not be best, they all
achieve reasonable results, and a clear improvement over
the baseline. It verifies that the proposed method is robust
to heatmap sampling hyper-parameters.
Hyper-parameters for Alignment. In the paper, Fig.



Table 1. Ablation study on the hyper-parameters of spatial
heatmap sampling, on the LSUN Cat [12] dataset. Heuristically,
using 2 heatmap centers in the 8×8 (level 1) feature resolution and
4 centers in the 16 × 16 (level 2) resolution lead to a good result.
The baseline does not use spatial heatmaps, denoted as ‘N/A’.

Baseline Level 1 Level 2
Num N/A 1 2 4 2 4 8
FID ↓ 8.36 6.93 6.81 6.97 6.90 6.81 7.02
DI ↓ 3.64 2.47 2.39 2.48 2.43 2.39 2.55

Table 2. Ablation study on the hyper-parameters of Lalign, on
the LSUN Cat dataset. We explore the effect of the loss weight and
the truncation threshold τ . Overall, the alignment regularization
Lalign is robust to various loss weights and τ is beneficial.

Loss Weight 0.25 0.50 1.00 1.50 2.00
FID ↓ 6.99 6.88 6.81 6.79 6.83
DI ↓ 2.46 2.41 2.39 2.43 2.41

Threshold τ 0.00 0.10 0.25 0.35 0.50
FID ↓ 7.10 6.93 6.81 6.82 6.87
DI ↓ 2.58 2.45 2.39 2.37 2.42

7 provides a qualitative analysis to support Lalign. Here
we quantitatively explore the effect of its loss weight and
truncation threshold τ , illustrated in Tab. 2. On the LSUN
Cat dataset, different loss weights can generally lead to a
satisfactory performance, where a number of 1.0 or 1.5
is close to best. Therefore, we use a loss weight of 1.0
for the experiments on all the datasets. We also prove
that the truncation operation is beneficial, since our spatial
heatmaps cannot perfectly match the real GradCAM maps
with complex structures. Truncating the samples those have
been ‘good enough’ reduces the difficulty of optimization.
With the help of τ , we improve the FID from 7.10 to 6.81.
Similarly, we use τ = 0.25 for all the datasets.

StyleGAN2

Ours
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Figure 1. Visualization of intermediate features of the genera-
tor. A bright color indicates a high value. It can be verified that the
generator of StyleGAN2 does not concentrate on the meaningful
regions while ours does, especially at the resolution ‘32× 32’.

Visualization of generator intermediate features. The
spatial awareness of generator is worth investigating. How-
ever, CAM or GradCAM is not a suitable visualization tool
because they both require a classification score, which is not
applicable for a generator. Introducing another classifier
may be a solution but it would involve the bias of the
classifier. As an alternative solution, we could directly
average the intermediate features of the generator along

the feature dimension. Such a visualization can be viewed
as the contribution of a layer towards certain pixels. As
shown in Fig. 1, our generator shows a much clearer spatial
preference than the baseline StyleGAN2 which presents
random spatial focus, particularly at the 32× 32 resolution.
It indicates our method indeed brings spatial awareness to
the generator.

E. Discussion
Claim of improving GAN equilibrium and Metrics. In
this work, we use Disequilibrium Indicator (DI) to evaluate
the degree of GAN equilibrium. Here, we would like to
explain why DI is a reasonable metric:

Recall that Wasserstein distance is a good indicator of
GAN equilibrium [1, 2], and can be approximated as
W = Ex∼Pr [f(x)] − Ez∼p(z)[f(g(z))], where f(·)
represents the discriminator. The approximation is
valid as long as Lipschitz continuity stands. From this
perspective, DI = min[f(x)] − max[(f(g(z))] can
be viewed as a specific form of W , and hence is a
reasonable metric for GAN equilibrium.

Additionally, we report the results with various metrics,
as shown in Tab. 3. Our method improves the baseline
StyleGAN2 over all the metrics. The metric Recall is
computed using the implementation of StyleGAN2.

Table 3. Quantitative results on LSUN Cat Dataset with
various metrics. The metric W is the Wasserstein distance
approximation introduced by WGAN [1].

FID ↓ DI ↓ W ↓ Recall ↑
StyleGAN2 8.36 3.64 4.91 30.71%

+ Ours 6.81 2.39 4.21 37.78%

Comparison to GAN Manipulation Methods. Although
not designed to do so, our EqGAN-SA provides an alter-
native way to manipulate the output synthesis of GAN.
Previous methods mostly manipulate synthesis through
interpolating latent code, since the latent space of GAN
has been found to encode rich semantic information. For
a certain attribute, they search for a certain direction in the
latent space, and then alter the target attribute via moving
the latent code z along the searched direction [3,4,8,10,11].
However, for each pre-trained GAN model, these methods
require to annotate a collection of the generated samples.
They use the annotated samples to train linear classifiers
in the latent space. Instead, our EqGAN-SA achieves the
manipulation ability in an unsupervised way, relying on
self-emerging attention.

Recently, a method SeFa [9] proposes a closed-form fac-
torization algorithm to find semantically meaningful direc-
tions in the latent space without supervision. Unfortunately,
it does not guarantee the attributes of found directions. For
example, if wanting to spatially manipulate the synthesis



like EqGAN-SA, the user has to manually check the effect
of various directions, while the one corresponding to spatial
manipulation may not exist. In addition, EqGAN-SA
supports editing both on the overall location and the local
structure, while SeFa [9] cannot. Moreover, a concurrent
work [5] generates 2D keypoints from the latent space and
associate them to appearance embeddings. It encodes the
generated keypoints into styles maps, adopting a similar
technical choice to ours. Compared to EqGAN-SA, it can
only change the local structures of synthesis.
Dataset Limitation for Manipulation. We have observed
that moving heatmaps will alter various contents on differ-
ent datasets. For example, it changes the cat faces on the
LSUN Cat while the church towers on the LSUN Church.
This matches our design target, since the discriminative/at-
tentive contents are different on various datasets, but yields
to difficulty in manipulation. In addition, the diversity of the
training dataset limits the manipulation result. For example,
the face images in the FFHQ [6] dataset have been well-
aligned, i.e., the location of face is constrained to a vertical
range (close to center). Therefore, moving heatmaps to top
cannot lead to an image with the face at the top.
Artifacts during Heatmap Movement. We notice that
there are artifacts when interpolating spatial heatmaps,
e.g., blurring at the location of heatmaps boundaries. We
attribute this to the instability from the outputs of spatial
encoding layers. Such an instability may be mitigated via
involving a regularization in the way of path length regu-
larization [7], i.e., requiring a fixed-size step of heatmap
movement to have a fixed-magnitude change in the image.
We plan to solve these artifacts in the future work, which
may further improve our synthesis quality.
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