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1. Matching Similarities with Multi-scale Fea-
tures

When performing the iterative updates, we compute the
matching similarities from features on all levels to include
multi-scale information. For a pixel p with coordinates
(x, y) in the depth-map D ∈ RW/4×H/4, we first find its
corresponding position pl for level l (l = 1, 2, 3) in the
reference feature map at the coordinates (x/2l−2, y/2l−2).
Then, the reference feature of pl, F0,l(pl), is found via
bilinear interpolation. Afterwards, with Nl new depth hy-
potheses, known camera parameters (for each level l) and
source features {Fi,l}N−1

i=1 , we warp (using differentiable
warping) pl into the respective source view and compute
the matching similarities between reference and each source
view. Finally, we use the 2× upsampled pixel-wise view
weights to compute the integrated matching similarities and
pass them through a level-wise 2D U-Net to aggregate the
neighborhood information.

2. Depth Upsampling

Following RAFT [6], we upsample the depth map from
1/4 to full resolution. Specifically, the depth of each pixel
in the high resolution depth map is a convex combination
of its 9 neighbors at the coarse resolution. The weights are
learned from the reference feature map. Fig. 1 illustrates the
upsampling process.

Figure 1. Illustration of depth upsampling. In the high resolution
depth map, the depth of each pixel is the weighted sum of its 9
coarse resolution neighbors.

3. Point Cloud Reconstruction
Before fusing the depth maps, we filter out unreliable

depth estimates, following MVSNet [7]. There are two fil-
tering steps: geometric consistency filtering and confidence
filtering.

Geometric Consistency Filtering. Following MVS-
Net [7], we apply a geometric constraint to measure the
consistency of depth estimates among multiple views. For
each pixel p in the reference view, we project it, using its
depth d0, to a pixel pi in the i-th source view. After looking
up its depth di in the source view, we reproject pi into the
reference view, and look up the depth dreproj at this location,
preproj. We consider pixel p and its depth d0 as consistent
to the i-th source view, if the distances, in image space and
depth, between the original estimate and its reprojection sat-
isfy:

|preproj − p| < δ, |dreproj − d0|/d0 < ε, (1)

where δ = 1 and ε = 0.01 are two thresholds. Finally, we
accept the estimations as reliable, if they are consistent in at
least Ngeo source views.

Confidence Filtering. Since our learned confidence in-
dicates how close the estimation is to the ground truth
depth, we use it to filter out estimations with high uncer-
tainty. Specifically, we use a confidence threshold τ = 0.3
throughout the experiments to filter out all the pixels with
confidence lower than it.

4. Visualization of Probability
Our GRU-based probability estimator encodes the per-

pixel probability distribution of depth with the hidden state.
A 2D CNN is applied on the hidden state to estimate the
probability of D2 samples that are uniformly distributed in
the inverse depth range for each pixel. We visualize this
probability distribution for various scenes in Fig. 2. For pix-
els with distinct features, the probability has a single domi-
nant peak and the estimation is precise. For some challeng-
ing situations, where distributions are non-peaky or multi-
modal, e.g. in textureless areas, our hybrid depth estimation
strategy can still robustly produce estimations as accurate
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as possible. We also visualize the update process of proba-
bility distribution in Fig. 3. We observe that the probability
distribution becomes more focused, several local maxima
get suppressed and the estimation becomes more precise
with more GRU iterations. In each iteration, multi-scale
matching information is injected into the hidden state. This
allows the hidden state to more accurately model the per-
pixel probability distribution of depth with each iteration.

5. Visualization of Pixel-wise View Weight
Several examples for our estimated pixel-wise view

weights are depicted in Fig. 4. Comparing the view weights
with the visible areas in the reference validates that the all
visible areas receive higher weights, while occluded and in-
visible parts have very low weights. Interestingly, in the
first two images, pixels on the windows have low weights.
Here, especially the upper row of windows mirror the sur-
rounding buildings and cannot provide reasonable matching
information. The other images have low weights in visible
regions at areas with strong perspective and specular reflec-
tions as well as occlusions, while fronto-parallel and tex-
tured regions achieve higher weights. We conclude that our
pixel-wise view weight is capable to determine co-visible
areas between the reference and source images.

6. Visualization of Point Clouds
We visualize the reconstructed point clouds from DTU’s

evaluation set [1], Tanks & Temples dataset [2] and ETH3D
benchmark [5] in Fig. 5, 6 and 7.

7. Future Work
Currently, the learned confidence is only used to filter

out unreliable estimates before depth fusion. However, we
believe it will be a promising direction to further exploit the
confidence in each GRU iteration. For example, one can
refine the depth of unconfident areas with the information
propagated from those confident areas [3, 4]. Another idea
would be to focus more effort on unconfident areas only,
while leaving the confident areas unchanged, which further
should improve efficiency.



Figure 2. Visualization of probability. Left: Reference images (the chosen pixels are highlighted). Right: Probability distribution of depth
for the chosen pixels. Red line denotes ground truth depth and blue line denotes our estimation.



Figure 3. (a) Reference image (the chosen pixel is highlighted). (b)-(f) Probability distribution of depth for the chosen pixel in the k-th
GRU iteration (k = 0 represents the probability distribution from initial hidden state h0). Red line denotes ground truth depth and blue
line denotes our estimation. Note our estimation becomes more accurate while several local maxima get suppressed in the distribution that
converges to a single, more pronounced peak with more iterations.

Figure 4. Visualization of our learned pixel-wise view weight on ETH3D [5]. Top row: reference images. Middle row: source images.
Bottom row: pixel-wise view weight. Areas marked with boxes in reference images and source images are co-visible.



Figure 5. Reconstruction results on DTU’s evaluation set [1].



(a) Intermediate dataset

(b) Advanced dataset

Figure 6. Reconstruction results on Tanks & Temples dataset [2].



(a) Training dataset

(b) Test dataset

Figure 7. Reconstruction results on ETH3D Benchmark [5].
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