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1. Supplementary materials
As we discussed in the paper, this document aims at

showing the detailed parameters of our architectures and
more comprehensive results for both object completion and
semantic scene completion. It also includes additional qual-
itative results that compares different methods against the
proposed.

1.1. Parameters in architectures

This work introduces two architectures to highlight the
benefits of the proposed layers. We list the parameters set
in every layer of our direct architecture in Table 1 and our
transformer architecture in Table 2.

1.2. Object completion

We exhibit a more detailed comparison on the object
completion evaluation in Table 3, Table 4 and Table 5 for
the Completion3D [14], PCN [26] and MVP [11] datasets,
respectively. While we only show the average results in the
paper, these tables show the per-category evaluation. Based
on these results, our architectures are better in most cate-
gories when evaluating the Chamfer distance in Table 3 and
Table 4; while, better in all categories when evaluating the
F-Score in Table 5.

1.3. Semantic scene completion with voxels

Since most of the point cloud approaches only perform
completion, we compared our semantic scene completion
results to the voxel-based approaches in Table 6. In order
to do this, we converted our high resolution point cloud to a
lower resolution 60×36×60 voxels. Table 6 shows the per-
category comparison against the voxel-based approaches.
Notably, although downsizing our point cloud introduces
errors and difference (e.g. the objects in the point cloud are
hollow while in the voxels are solid), we still achieve com-
petitive IoU results.

1.4. Semantic scene completion with point clouds

We illustrate the semantic scene completion results in
Fig. 1, evaluated on CompleteScanNet [21]. Since there
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Table 1. Parameters in each layer of our direct architecture.

is no other point cloud completion approach that explic-
itly claim that they can reconstruct scenes, we utilize the
architectures that were designed for object completion:
PCN [26], MSN [8], PoinTr [25] and VRCNet [11]. Due
to this, in Fig. 1, we perform the more complicated seman-
tic completion while the other methods carry out the simpler
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Layers Parameters

Feature Extraction s = 10 Dout = 16
Neighbor Pooling τ = 4

Feature Extraction s = 10 Dout = 64
Neighbor Pooling τ = 4
Positional Coding –

Transformer Similar to [25]

Feature Extraction s = 10 Dout = 64
Up-Sampling s = 10 Nup = 8 Dout = 3

Feature Extraction s = 10 Dout = 64
Feature Extraction s = 10 Dout = 64

Up-Sampling s = 10 Nup = 8 Dout = 3

Table 2. Parameters in each layer of our transformer architecture.

completion task.
We observe from the other methods [8, 11, 25, 26] that

their results show a high level of noise such that the objects
in the scenes are no longer comprehensible. In comparison,
our results have significantly less noise and produce recon-
structions that are very similar to the ground truth. More-
over, a particular attention is given to PoinTr [25] since we
derived our transformer architecture from them. Compar-
ing our results against [25], our reconstructions are signifi-
cantly more accurate. This in effect demonstrate the impor-
tant contribution of our proposed layers to our transformer
architecture.
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Figure 1. Semantic scene completion results on the CompleteScanNet [21] dataset

Output Resolution = 2,048, L2 metric, Completion3D [14] benchmark

Method plane cabinet car chair lamp sofa table vessel Avg.

FoldingNet [24] 12.83 23.01 14.88 25.69 21.79 21.31 20.71 11.51 19.07
PointSetVoting [27] 6.88 21.18 15.78 22.54 18.78 28.39 19.96 11.16 18.18
AtlasNet [5] 10.36 23.40 13.40 24.16 20.24 20.82 17.52 11.62 17.77
PCN [26] 9.79 22.70 12.43 25.14 22.72 20.26 20.27 11.73 18.22
TopNet [14] 7.32 18.77 12.88 19.82 14.60 16.29 14.89 8.82 14.25
SA-Net [19] 5.27 14.45 7.78 13.67 13.53 14.22 11.75 8.84 11.22
SoftPoolNet [18] 6.39 17.26 8.72 13.16 10.78 14.95 11.01 6.26 11.07
GRNet [23] 6.13 16.90 8.27 12.23 10.22 14.93 10.08 5.86 10.64
PMP-Net [20] 3.99 14.70 8.55 10.21 9.27 12.43 8.51 5.77 9.23
CRN [15] 3.38 13.17 8.31 10.62 10.00 12.86 9.16 5.80 9.21
SCRN [16] 3.35 12.81 7.78 9.88 10.12 12.95 9.77 6.10 9.13
VRCNet [11] 3.94 10.93 6.44 9.32 8.32 11.35 8.60 5.78 8.12
ASFM-Net [22] 2.38 9.68 5.84 7.47 7.11 9.65 6.25 4.84 6.68

Ours (direct) 3.52 12.72 7.37 9.21 8.57 11.66 8.77 4.97 8.35
–without Lorder 3.64 12.83 7.48 9.34 8.70 11.79 8.88 5.07 8.47
Ours (transformer) 2.41 9.54 4.99 7.89 6.89 9.92 7.20 4.29 6.64
–without Lorder 2.48 9.62 5.10 7.99 7.01 10.04 7.29 4.39 6.74

Table 3. Evaluation on the object completion on Completion3D [14] benchmark based on the Chamfer distance trained with L2 distance
(multiplied by 104) with the output resolution of 2,048.
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Output Resolution = 16,384, L1 metric, PCN [26] dataset

Method plane cabinet car chair lamp sofa table vessel Avg.

3D-EPN [3] 13.16 21.80 20.31 18.81 25.75 21.09 21.72 18.54 20.15
ForkNet [17] 9.08 14.22 11.65 12.18 17.24 14.22 11.51 12.66 12.85

PointNet++ [12] 10.30 14.74 12.19 15.78 17.62 16.18 11.68 13.52 14.00
FoldingNet [24] 9.49 15.80 12.61 15.55 16.41 15.97 13.65 14.99 14.31
AtlasNet [5] 6.37 11.94 10.11 12.06 12.37 12.99 10.33 10.61 10.85
TopNet [14] 7.61 13.31 10.90 13.82 14.44 14.78 11.22 11.12 12.15
PCN [26] 5.50 10.63 8.70 11.00 11.34 11.68 8.59 9.67 9.64
MSN [8] 5.60 11.96 10.78 10.62 10.71 11.90 8.70 9.49 9.97
SoftPoolNet [18] 6.93 10.91 9.78 9.56 8.59 11.22 8.51 8.14 9.20
GRNet [23] 6.45 10.37 9.45 9.41 7.96 10.51 8.44 8.04 8.83
PMP-Net [20] 5.65 11.24 9.64 9.51 6.95 10.83 8.72 7.25 8.73
CRN [15] 4.79 9.97 8.31 9.49 8.94 10.69 7.81 8.05 8.51
SCRN [16] 4.80 9.94 9.31 8.78 8.66 9.74 7.20 7.91 8.29
PoinTr [25] 4.75 10.47 8.68 9.39 7.75 10.93 7.78 7.29 8.38

Ours (direct) 5.34 9.20 8.26 8.96 9.40 10.46 7.54 8.56 8.47
–without Lorder 5.47 9.34 8.37 9.09 9.54 10.59 7.69 8.66 8.59
Ours (transformer) 4.43 10.03 8.28 8.96 7.29 10.55 7.31 6.85 7.96
–without Lorder 4.56 10.17 8.42 9.10 7.41 10.66 7.41 6.96 8.09

Table 4. Evaluation on the object completion on PCN [26] dataset based on the Chamfer distance trained with L1 distance (multiplied by
103) with the output resolution of 16,384.

Output Resolution = 16,384, F-Score@1%, MVP [11] dataset

Method plane cabinet car chair lamp sofa table vessel Avg.

TopNet [14] 0.789 0.621 0.612 0.443 0.387 0.506 0.639 0.609 0.576
PCN [26] 0.816 0.614 0.686 0.517 0.455 0.552 0.646 0.628 0.614
MSN [8] 0.879 0.692 0.693 0.599 0.604 0.627 0.730 0.696 0.690
SoftPoolNet [18] 0.843 0.568 0.636 0.623 0.698 0.568 0.680 0.71 0.666
GRNet [23] 0.853 0.578 0.646 0.635 0.710 0.580 0.690 0.723 0.677
ECG [10] 0.906 0.680 0.716 0.683 0.734 0.651 0.766 0.753 0.736
NSFA [29] 0.903 0.694 0.721 0.737 0.783 0.705 0.817 0.799 0.770
CRN [15] 0.898 0.688 0.725 0.670 0.681 0.641 0.748 0.742 0.724
VRCNet [11] 0.928 0.721 0.756 0.743 0.789 0.696 0.813 0.800 0.781
PoinTr [25] 0.888 0.681 0.716 0.703 0.749 0.656 0.773 0.760 0.741

Ours (direct) 0.926 0.738 0.766 0.783 0.837 0.709 0.829 0.821 0.801
–without Lorder 0.910 0.750 0.741 0.734 0.835 0.715 0.839 0.783 0.788
Ours (transformer) 0.942 0.753 0.780 0.799 0.851 0.725 0.844 0.836 0.816
–without Lorder 0.922 0.731 0.759 0.776 0.831 0.703 0.824 0.813 0.795

Table 5. Evaluation on the object completion on MVP [11] dataset based on the F-Score@1% trained with L2 Chamfer distance and the
output resolution of 16,384.
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Method res. whole ceil. floor wall win. chair bed sofa table tvs furn. objs Avg.

Lin et al. [7] 60 36.4 0.0 11.7 13.3 14.1 9.4 29.0 24.0 6.0 7.0 16.2 1.1 12.0
Geiger and Wang [4] 60 44.4 10.2 62.5 19.1 5.8 8.5 40.6 27.7 7.0 6.0 22.6 5.9 19.6
SSCNet [13] 60 55.1 15.1 94.6 24.7 10.8 17.3 53.2 45.9 15.9 13.9 31.1 12.6 30.5
VVNet [6] 60 61.1 19.3 94.8 28.0 12.2 19.6 57.0 50.5 17.6 11.9 35.6 15.3 32.9
SaTNet [9] 60 60.6 17.3 92.1 28.0 16.6 19.3 57.5 53.8 17.7 18.5 38.4 18.9 34.4
ForkNet [17] 80 37.1 36.2 93.8 29.2 18.9 17.7 61.6 52.9 23.3 19.5 45.4 20.0 37.1
CCPNet [28] 240 63.5 23.5 96.3 35.7 20.2 25.8 61.4 56.1 18.1 28.1 37.8 20.1 38.5
SketchSSC [2] 60 71.3 43.1 93.6 40.5 24.3 30.0 57.1 49.3 29.2 14.3 42.5 28.6 41.1
SISNet [1] 60 78.2 54.7 93.8 53.2 41.9 43.6 66.2 61.4 38.1 29.8 53.9 40.3 52.4

Ours (direct) 60 63.7 38.1 97.1 37.0 15.5 18.7 55.2 54.9 29.6 21.4 49.2 23.7 40.0
–with γ = 1 in Lsemantic 60 58.2 35.1 94.3 34.0 12.7 15.8 52.3 52.0 26.7 18.4 46.3 20.9 37.2
Ours (transformer) 60 66.1 40.4 98.6 39.6 18.1 21.2 57.5 57.0 31.9 23.5 51.3 26.4 42.4
–with γ = 1 in Lsemantic 60 63.4 36.6 95.0 36.6 14.8 18.1 53.9 53.4 28.8 20.1 47.8 22.5 38.9

Table 6. Semantic completion on NYU dataset. The value in res. (x) is the output volumetric resolution which is x× 0.6x× x.
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