
SUPPLEMENTARY MATERIAL
Less is More: Generating Grounded Navigation In-
structions from Landmarks

1. Bootstrapping a Landmark Dataset
Extracting landmark phrases. As outlined in Sec. 3,
the first step to create silver landmark data is extracting
temporally-ordered lists of landmark phrases from RxR’s
human instructions. For this, we use a 3-layer distilled [7]
mBERT-based [2] dependency parser pretrained on multi-
lingual Wikipedia data [3] and outputting Universal Depen-
dencies [5]. Specifically, the steps are:

1. Extracting all entity mentions (along with their part-
of-speech) from an instruction;

2. Centering around the mentions as the head N/NP, ab-
sorbing all of their non-clausal dependents. E.g. for ...
at the large brown chair that sits next to the window
..., the mention is chair, and the absorbed dependents
are large and brown (but not the dependent clause that
sits . . . );

3. Consolidating the head N/NP and its absorbed depen-
dents into a single text span and recording the indices
of the first and last characters. In the example above,
we produce large brown chair.

While the method identifies most desired landmark text
spans, inevitable errors do occur, sometimes due to the im-
perfection of the human-written instructions, e.g.

• Case 1. Non-object NPs. For “. . . take two steps to-
wards the door”, for instance, steps will be extracted
as a candidate. Similarly, left in “. . . take a left”.

• Case 2. Ill-formed/incomplete sentences. For exam-
ple, in Fig. 3, the single-word sentence “Fancy.” re-
sults in fancy being parsed as a landmark text span.

To address Case 1, we manually compiled a stoplist
(Fig. 1) of common non-object NPs that may appear in in-
door environment (e.g. [side, step, one, endpoint, . . . ]) for
each language (English, Hindi, Telugu). Case 2 is unavoid-
able with the tools currently available to us. Fortunately,
they occur quite rarely.

Fig. 2 demonstrates landmark phrase extraction on an ex-
ample instruction.

Evaluation. In Sec. 3 of the paper, we include re-
sults from a small-scale evaluation of 100 randomly-
sampled English instructions from the silver landmark
dataset. To provide ground truth landmark groundings,
each automatically-extracted landmark phrase was manu-
ally aligned by the paper authors to a subsequence of frames
from the corresponding pose trace video. The interface used

BLEU CIDEr

2-class 5.3 7.7
10-class 4.8 7.2
100-class 4.4 6.4

Table 1. Impact of training the landmark detector on clustered
landmark classes. Automatic evaluation scores are reported for
Marky-mT5 without pretraining, using the RxR Val-Unseen split.

for this manual-alignment is illustrated in Fig. 3. To com-
pute the precision scores in the paper, whenever our auto-
matic approach grounds a landmark phrase to a frame, it is
a true positive if the frame is in the human-selected subse-
quence, and a false positive otherwise. Results are averaged
over all landmark phrases in an instruction and then all in-
structions.

Further analysis of the silver data. Fig. 4 provides fur-
ther examples of landmark annotations from our boot-
strapped silver landmark dataset. Fig. 5 presents the dis-
tribution of landmark phrases, including the 20 most fre-
quent and least frequent landmark phrases. The distribution
naturally has a long tail, although many unique landmark
phrases are semantically similar (e.g. brown chair vs. white
chair). We also empirically confirm the intuition that peo-
ple tend to pick landmarks close to the outbound direction
(i.e. the direction towards the next route segment). Fig. 6
illustrates the distribution of landmark centers in equirect-
angular image coordinates aligned to the outbound direc-
tion of each pano. On the horizontal dimension (heading),
the landmarks are clustered close to the outbound direction,
whereas on the vertical dimension (pitch), landmarks are
clustered on the horizon and slightly below.

2. Landmark Detection
Training. As noted in Sec. 4, the CenterNet landmark
detector was trained using a single class to represent a land-
mark (i.e., 2 classes in total). In initial experiments, we
also investigated training the detector using a richer set of
landmark classes, by clustering landmark phrases (using k-
means) into classes based on their MURAL-large [4] text
embeddings. However, this slightly reduced automatic eval-
uation scores for the full model (Tab. 1), perhaps because
detection confidence scores are uncalibrated across classes.

Inference. During inference with the landmark detector,
we must determine how many landmarks to return. As de-
scribed in Sec. 4, we used a 1:1 ratio of landmarks to path
length, defined as the number of panos in the path. To de-
termine this ratio, we experimented with the following val-
ues {1.0, 1.2, 1.5, 1.75, 2.0} and computed automatic eval-
uations on the full model as reported in Tab. 2.



Figure 1. Stoplists for excluding hard-to-localize noun phrases (NPs) when extracting landmark phrases. Left: English; Center: Hindi;
Right: Telugu. Each stoplist was compiled by a native speaker examining samples of parsed landmark phrases.

Figure 2. Landmark phrase extraction for the instruction segment “You are facing towards the commode. Turn right to and exit the
washroom. Turn right and walk straight till you reach the white cabinet.”. First the object-denoting heads are identified, then we filter
through each one’s dependency links to find full NP phrases for each head with constraints (e.g. only including adjectival, numeral, or
adverbial dependencies, etc.).



Figure 3. Annotation interface used to collect ground-truth landmark groundings for a small-scale evaluation of the silver landmark dataset.
For each automatically extracted landmark phrase (e.g., back yard, right), the annotator inputs a range identifying the frames in the pose
trace video (left) where that landmark can be seen.

Figure 4. Further examples of bootstrapped silver landmark annotations, illustrating both correct groundings (e.g., packaged items, top
right [8] and beaded curtain, bottom right [4]) as well as failure cases (e.g., lamp, top left [5]).



Figure 5. Left: Frequency distribution of the top 20 landmark phrases. Right top: Long-tail distribution over all landmark phrases sorted
in descending order (both x- and y-axes are labeled in log10-scale: landmark indices for x-axis, instance counts for y-axis). Right bottom:
20 samples of landmark phrases occurring only once. Common indoor/household items described generically (e.g. table or door) come
on top of the rank over more specified ones (e.g. large brown dining table or closed double door). On the bottom end of frequency are
specifically described uncommon objects, e.g. handmade wooden lamp, parapet wall, first two arched doorways, etc.

Figure 6. Distribution of landmark centers in equirectangular im-
age coordinates aligned to the outbound direction (i.e., the direc-
tion to the next pano on the route). As expected, landmarks are
clustered around the outbound heading direction. With regards to
pitch, most landmarks are found on the horizon or slightly below.
The reason is fairly simple in the context of indoor environments:
most landmarks are found on the floor or at table height, relatively
few are found on walls and ceilings.

3. Instruction Generation

Pretraining and Finetuning. During pretraining, mod-
els are trained with Cross Entropy Loss and optimized with
Adafactor [6] with a learning rate of 1. Batch size is 128.
Pretrained models were trained for 1.45M steps. Each pre-

#landmarks / path length ratio BLEU CIDEr

1.0 5.8 7.5
1.2 5.8 7.2
1.5 5.3 6.1
1.75 4.9 5.0
2.0 4.4 3.7

Table 2. Impact of varying the #landmarks / path length ratio.
Automatic evaluation scores are reported for Marky-mT5 with
Rewrite auxiliary training and CC3M/12M pretraining.

trained model (CC3M, CC12M, CC3M+CC12M) was fine-
tuned and the final pretrained version of the downstream
model was selected based on SPICE.

4. Experiments

Human Wayfinding In the PanGEA interface, each an-
notator is shown a virtual environment in a window on the
left, paired with the textual navigation instruction being
evaluated on the right (refer top pane in Fig. 7). Hovering
their mouse on the window, the annotator will see a green-
square indicator showing them the next locations available
for them to move to. After double clicking on the green-
square, they are taken to the next location — illustrated in
Fig. 7 bottom pane, which presents a chain of first person
snapshots taken while moving. Upon arriving at the loca-



Visual Search %

Model Landmarks WC NE ↓ SR ↑ SDTW ↑ NDTW ↑ Quality ↑ Start ↓ Other ↓ Time (s) ↓

R
xR

(e
n) 1 Marky-mT5 Outbound 75.0 5.2 52.8 40.0 57.0 4.2 36.7 25.4 101.8

2 Marky-mT5 Predicted 81.6 4.2 61.3 46.5 61.2 4.3 36.1 24.6 107.6
3 Marky-mT5 Silver 91.2 4.0 65.0 49.0 60.8 4.3 36.3 25.2 118.4
4 Human - 98.6 2.7 77.5 62.2 71.0 4.6 35.3 24.3 113.5

R
xR

(h
i) 1 Marky-mT5 Outbound 82.1 5.6 50.8 32.6 46.4 4.2 42.5 27.4 194.8

2 Marky-mT5 Predicted 78.5 4.7 59.4 40.9 52.5 4.2 38.4 27.6 192.4
3 Marky-mT5 Silver 72.4 4.6 60.7 42.3 54.4 4.3 39.1 27.1 176.0
4 Human - 75.0 2.9 77.1 59.4 67.8 4.6 37.0 26.3 171.5

R
xR

(t
e) 1 Marky-mT5 Outbound 43.2 5.2 56.3 39.6 52.9 4.1 37.5 27.9 143.8

2 Marky-mT5 Predicted 52.1 4.3 63.9 44.6 55.1 4.1 38.3 27.2 162.5
3 Marky-mT5 Silver 51.9 4.4 64.2 45.0 55.9 4.1 38.1 27.5 154.5
4 Human - 53.7 2.6 80.9 62.6 68.9 4.4 37.1 26.5 157.4

Table 3. RxR Val-Unseen human wayfinding performance (N = 1,517 for each model), reported separately by language (English, Hindi
and Telugu).

Figure 7. Top: the PanGEA interface used in human wayfinding
evaluations; Bottom: illustration of a series of first person snap-
shots taken along a navigation path.

tion the annotator believes is the destination, they may hit
the STOP button to finish the task.

Afterwards, the annotator responds to a multi-choice
question to provide a subjective rating of instruction quality,
classifying the instruction as containing:
• No mistakes, very very easy to follow;
• Few mistakes, easy to follow;
• Some mistakes, but still not hard to follow;
• Many mistakes, hard to follow;
• Way too many mistakes to follow.

From the top to the bottom, the answer determines the Qual-
ity metric (a Likert score from 5 to 1). All annotators were
fluent in the languages in the instructions given to them for
wayfinding. The annotators were paid hourly wages that are
competitive for their locale, and they have standard rights as
contractors.

Results In Tab. 2 of the main paper we report human
wayfinding results on paths from the RxR Val-Unseen split,
aggregated overall all languages. In Tab. 3 we report these
results separately for each language (English, Hindi and
Telugu). Results – and most importantly, the patterns hold-
ing between the different settings – are consistent across all
languages.

Finally note that, for both R2R and RxR evaluation (Val-
Unseen), each path is only evaluated once per language.
Therefore, for R2R we have 783 items/paths, for RxR, we
have 1,517 paths, and with 3 languages, 4,551 items.

Error analysis on Marky-mT5 instructions. Our hu-
man wayfinding results are representative of a step-change
in instruction quality compared to previous models. To bet-
ter understand the types of errors that still remain, we per-
form a manual error analysis on 110 randomly-sampled En-
glish instructions generated for RxR Val-Unseen paths by
the full Marky-mT5 system using predicted landmarks.

To perform the analysis we added an option in the
PanGEA wayfinding interface to toggle the visibility of the
ground-truth path, so that we could better assess how well
that path was described by the generated instruction. We
classify instruction errors and weaknesses into the follow-
ing six categories:
• Landmark Errors

– Full Hallucination. The instruction describes a
landmark that does not exist in the environment;

– Weak Description. A landmark description that
is flawed, but not completely wrong (e.g. blue
towel described as blue napkin);

– Wrong Orientation. An instruction refers to a
landmark but orients it incorrectly with respect
to the route, e.g. saying it is on the left side when



% of all errors

Landmark Errors:
Full Hallucination 11.4
Weak Description 62.9
Wrong Orientation 7.9
Path Errors:
Wrong Action 7.1
Missing Action 3.6
Weak Granularity 7.1

Table 4. Of generated instructions with errors, 25.7% of errors
are issues with actions or landmark orientation (wrong, missing,
or convoluted [i.e., weak granularity]). Another 11.4% of errors
are full hallucinations but the overwhelming majority, 62.9% are
an issue with some aspect of the description of a landmark.

it is actually on the right side.
• Path Errors

– Wrong action. A mistake in an action/step (e.g.
turn right when one needs to turn left);

– Missing action. Skipping a an action/step (e.g.
the instruction neglects to mention a crucial right
hand turn);

– Weak granularity. Some segment of the instruc-
tion is too coarse to describe the multiple steps
that are needed in the path trajectory (e.g. merely
using go forward to describe a route that passes
through two doorways and a dining hall).

We provide examples of each error type in Fig. 8 and
Fig. 9, where the blue/purple (arrowed) balls indicate the
ground truth path. The error analysis was performed by the
paper authors with a critical eye; any weakness in the in-
structions was annotated as an error.

The results are summarized in Tab. 4. Of the instructions
annotated, 16% were judged to be error-free, with some er-
rors or weaknesses identified in the remaining 84%. Out
of the 6 error types, Weak Description was by far the most
common (62.9% of all errors). In contrast, the proportion
of Full Hallucination, Wrong Orientation and Wrong Ac-
tion errors–which were common in previous models–was
relatively low, at 11.4%, 7.9% and 7.1% respectively.

Anecdotally, we noticed that the cost of different errors
varies. Human wayfinders can often overcome minor flaws
in the description of a landmark (e.g. if a pink bedspread is
misidentified as a white bedspread). However if ambiguity
is involved, e.g. move towards the open door when there
more than one door is in view, confusion results. Full hallu-
cination and wrong orientation can certainly be misleading
but if the navigator survey the environment carefully in the
context of the neighboring segments in the instruction, they
are also often resolvable. The three types of path errors are
less recoverable, as they often result in missteps that take
the wayfinder to an entirely wrong path.

Model Landmarks Aux PT SR ↑ SPL ↑ NDTW ↑ SDTW ↑
1 SpkFol-RxR Full Panos 29.6 25.9 41.6 23.4
2 MARKY-MT5 Full Panos 50.7 46.9 60.1 43.1
3 MARKY-MT5 Outbound 53.6 50.1 62.9 46.7
4 MARKY-MT5 Silver 55.9 52.1 64.1 48.6
5 MARKY-MT5 Silver X 56.3 52.3 64.2 48.9
6 MARKY-MT5 Silver X X 56.4 52.5 64.2 48.9
7 MARKY-MT5 Pred. X X 55.7 51.8 63.3 47.7
8 Human 56.5 52.7 62.9 48.4

Table 5. Automatic evaluations of generated instructions on RxR
Val-Unseen based on HAMT [1] wayfinding performance. Set-
tings and row numbers correspond to Tab. 3 in the main paper.

Results on automatic evaluation. Beyond the strong
quality of MARKY-MT5-generated instructions in human
evaluation (????), they also perform at the similar level in
automatic/model evaluation. Employing the state-of-the-art
HAMT [1] VLN agent (Tab. 5), in particular, we received
55.7% vs. 56.5% success rate and 63.3% vs. 62.9% nDTW
between model-generated (with predicted landmarks) vs.
human-written instructions, demonstrating that MARKY-
MT5 produces instructions followable by both human and
model agents.
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Figure 8. Examples of Landmark Errors. Full Hallucination: a plant and portrait are mentioned in the top and bottom panes respectively
but these landmarks cannot be found in the visual scene. Weak Description: the top pane exemplifies an ambiguous landmark – there are
two open doors, and it’s not clear which one to move towards; the bottom pane illustrates a flawed description (specifically, wrong color).
Wrong orientation: On the top pane, the shower is to the right hand side of the wayfinder rather than left; in the bottom pane, the sofa
chair should be on the left side instead.

Figure 9. Examples of Path Errors. Wrong action: the examples show a right turn mistaken to be a left turn, and going up stairs mistaken
as going down. Missing action: for the top pane, the washroom is not visible before making an additional left turn; for the bottom pane,
stairs require a right turn to see. Weak granularity: in the examples, overly coarse instruction segments are given for long path segments.
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