A. Dataset Details

We perform comprehensive experiments on popular graph
datasets including citation graph Cora, Citeseer, Pubmed,
and ogbn-arXiv [28, 37]. Their statistics are listed in Ta-
ble 8. Note that the dataset split is a little different from
their original settings, as we can only test the final optimized
model due to the requirement of lifelong learning, thus we
don’t need a validation set. For Cora, Citeseer, and Pubmed,
the model consists of two feature broadcast layers (7) with
C1) = 1 and C(9) = 2 channels each. For obgn-arXiv, we
found that node features can be easily smoothed due to mul-
tiple feature propagation, hence we use the feature transform
layers to concatenate its input features. We take the one-hot
vector as the target vector z;, adopt the cross-entropy loss,
and use the softsign [11] function o(z) = %/(1+|=|) as the
non-linear activation.

Table 8. The statistics of the datasets used for lifelong learning.

Dataset Nodes Edges Classes Features Labels
Cora 2,708 5,429 7 1,433 0421

Citeseer 3,327 4,732 6 3,703 0.337

Pubmed 19,717 44,338 3 500 0.054

obgn-arXiv 169,343 1,166,243 40 128 0.5

B. Proof of Sequence Invariant Sampling

Let P be the probability that the observed items are se-
lected at time ¢, thus the probability that one item is still kept
in the memory after k selection is P*. This explains that
earlier items have lower probability to be kept in the memory
and this phenomenon was reported in the Section 4.2 of [2].
To compensate for such effect and

Proposition B.1. 7o ensure that all items in the continuum
have the same probability to be kept in the memory at any
time t, we can set the probability that the n-th item is selected
at time t as

1 t< M
P,(t)=% M/n t>M,t=n, (10)
(n=U/n t>M,t>n

where M denotes the memory size.

Proof. 1t is obvious for t < M as we only need to keep all
items in the continuum. For ¢ > M, the probability that the
n-th item is still kept in the memory at time ¢ is

P,i=P,(n)-P,(n+1)---P,(t —1)-P,(t),
M n t—2 t—1
Wl an
M

et

This means the probability P, ; is irrelevant to n and all
items in the continuum share the same probability. In prac-
tice, we always keep M items and sample balanced items
accross classes. O

C. Distributed Human Action Recognition

Implementation In practice, the temporal growing graph
can only be learned sequentially, thus we take the first 80%
of each sequence for training and the remaining 20% for
testing. Specifically, we define the radius of neighborhood
as the temporal distance. Therefore, all the nodes at the same
instant are 1-hop neighbors of each other. For each feature
graph we have K = 2 in the continuum (1). We construct
FGN using two feature transform layers (8) with attention
weights (9) and one fully connected layer to predict for the
sub-graph classification. For fairness, we use C(1) = 5,
Fqy = 25, Cgy = 32, and F{yy = 12 for all models. In
the experiments, we find that GCN, APPNP obtain the best
overall performance using the SGD optimizer, while MLP,
GAT, and FGN performed the best using the Adam optimizer.
Running time We also report the average running time for
the models in Table 9. Note that the efficiency of FGN is on
par with other methods. Considering that FGN has a much
better performance, we believe that FGN is more promising.

Table 9. Running time comparison on the action recognition.

MLP GCN APPNP GAT FGN
Runtime (ms) 3.51 538 536 548 5.76

D. Image Feature Matching

Although many hand-crafted feature descriptors such
as SIFT [27] and ORB [33] have been proposed decades
ago, their performance is still unsatisfied for large view
point changes. Due to the well generalization ability, deep
learning-based feature detectors have received increasing
attentions. For example, SuperPoint [9] introduced a self-
supervised framework for extracting interest point detectors
and descriptors. SuperGlue [36] introduced graph attention
model into SuperPoint for feature matching.
Implementation In the experiments, we adopt C = 1,
K =1, F = 256 in both FGN and FGN for fairness. The
training loss function is adapted from [29] which maximizes
the likelihood of predicting similar node embeddings cor-
responding to their spatial location. We recommend the
readers refer to SuperPoint [9], SuperGlue [36], and [29] for
more details of the loss functions.

Dataset We perform training and evaluation on the Tar-
tanAir dataset [46]. TartanAir is a large (about 3TB) and

very challenging visual SLAM dataset consisting of binoc-
ular RGB-D video sequences together with additional per-
frame information such as camera poses, optical flow, and
semantic annotations. The sequences are rendered in AirSim
[38], a photo-realistic simulator, which features modeled
environments with various themes including urban, rural,
nature, domestic, public, sci-fi, efc. Figure 4 contains sev-
eral example video frames from TartanAir. The dataset is
collected such that it covers challenging viewpoints and di-
verse motion patterns. In addition, the dataset also includes
other traditionally challenging factors in SLAM tasks such as
moving objects, changing lighting conditions, and extreme
weather. We randomly select 80% of the sequences for train-
ing and take the remaining for testing. We recommend the
readers refer to [46] for more details of the dataset.

E. Limitation

Although we have shown that FGN outperformed the
state-of-the-art methods in node classification, sub-graph
classification, and edge prediction, it also has several limi-
tations. First, our current implementation is not vectorized
for taking a varying number of neighbors, which is less
computationally efficient. Second, in the experiments, we
assumed scalar edge weights, while in the general case, the
graph edge weights are represented by a vector, as defined
in the feature graphs. Third, since our main contribution
is the novel graph topology, i.e., feature graph, we mainly
compared it with the the state-of-the-art graph models such
as GAT by applying an off-the-shelf lifelong learning algo-
rithm. However, it might also be applicable to other lifelong
learning algorithms. In the future, we plan to fully optimize
the codes, extend it to applications with vector edge weights,
and apply more lifelong learning algorithms.

