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This supplementary material presents (1) the detailed network structure and hyper-parameters, (2) results on our MS-
SSIM-oritended models, (3) more ablation studies, (4) more subjective results and (5) limitation analyses of our proposed
method.
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1. Network Details
In this section, we provide the hyper-parameters of our network. The hyper-parameters of the transform model and entropy

model are shown in Table. 1, which are almost the same as [9] except for the additional data-dependent convolutional layer.
The hyper-parameters of the proposed Neural-syntax Generator and Weights Generator are shown in Table. 2. In the

Syntax Generator, we concatenate multi-scale global pooling results together to send them into the final fully-connected
layer. In the Weights Generator, after the last fully-connected layer, we reshape the one-dimension feature map to fit the
shape of a convolutional kernel.

N and M are set to 192 and 16 respectively for lower bit-rate models. For higher bit-rate models, we set N and M to 384
and 32 to preserve more information. k is set to 1.

The hyper-parameters of our neural-syntax based post-processing are shown in Table. 3. Our post-processing is based on
HAN [12]1 but without upsampler and with dynamically generated weights to produce the final reconstruction. We use two
configurations for low and high bit-rate models.

2. Results on MS-SSIM-Oriented Models
Besides Mean Square Error (MSE), we also train models with data-dependent transform using MS-SSIM as the distortion

metric. The loss function is shown as follows,

L = λ(1−DS(x, x̂)) +R(ẑs) +R(ẑc) +R(ẑh), (1)

where DS(·, ·) calculates MS-SSIM over two images. R(ẑs), R(ẑc), R(ẑh) in Eq. (1) represent the bit-rate of the neural-
syntax, content stream and hyper-prior, respectively. Here, λ belongs to {20, 64, 120, 160}. Similar to MSE-oriented models,
our high bit-rate models, whose λ ranges among {64, 120, 160}, double the number of their parameters for stronger model
capacity.

*Corresponding author. Our project is available at: https://dezhao-wang.github.io/Neural-Syntax-Website/.
1Here we implement our post-processing with reference to https://github.com/wwlCape/HAN.
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Table 1. Hyper-parameters of our encoder, decoder, hyper encoder, hyper decoder and prediction model. (De)Conv: a×a m→n sl denotes
(De)Convolution (transposed convolution) layer with kernel size a and stride l. Its input channel is m and output channel is n. Conv*
means the parameters are dynamically generated.

Encoder Decoder Hyper Encoder Hyper Decoder Prediction Model

Conv: 5×5 3→N s2 DeConv: 5×5 (N -M )→N s2 Conv: 3×3 N→N s1 DeConv: 5×5 N→N s2 Conv: 3×3 (2N -M )→N s1
GDN IGDN Leaky ReLU Leaky ReLU Leaky ReLU

Conv: 5×5 N→N s2 DeConv: 5×5 N→N s2 Conv: 5×5 N→N s2 DeConv: 5×5 N→N s2 Conv: 3×3 N→N s1
GDN IGDN Leaky ReLU Leaky ReLU Leaky ReLU

Conv: 5×5 N→N s2 DeConv: 5×5 N→N s2 Conv: 5×5 N→N s2 DeConv: 3×3 N→N s1 Conv: 3×3 N→N s1
GDN IGDN Leaky ReLU

Conv: 5×5 N→N s2 DeConv: 5×5 N→M s2 Flatten
IGDN FC: 4N→2(N -M )

Conv*: k×k M→3 s1

Table 2. Hyper-parameters of our syntax generator and weights generator.

Syntax Generator Weights Generator

Conv: 3×3 M→2M s2 FC: M→8M
ReLU Leaky ReLU

Conv: 3×3 2M→4M s2 FC: 8M→16M
ReLU Leaky ReLU

GlobalAvgPooling FC: 16M→k*k*M*N
Concat

FC: 7M→M

Table 3. Hyper parameters of our neural-syntax based post-processing.

Low Bit-rate High Bit-rate

Residue Group 4 6
Residue Block 8 12
Feature Map Width 64
Reduction 32
Activation ReLU

The training strategies and settings are the same as the ones adopted by MSE-driven models. We compare our method
with other methods on Kodak [8] and CLIC Profession Validation Dataset [1]. We convert the MS-SSIM values to decibels,
i.e. −10 log10(1− d) where d refers to the MS-SSIM value, for a clear illustration.

We compare our method to existing end-to-end learned image compression methods optimized for MS-SSIM [2,7,9,11]2.
We also compare our method with hybrid codecs, i.e. JPEG [14], BPG [6] and VVC [4]. We use VTM 8.0 [5] with chroma
format 4:2:0 and 4:4:4 in the evaluation. We set BPG as the anchor and calculate the BD-rate [3] over it. The results are
shown in Table 4. We can find that our method outperforms all compared methods on both Kodak and CLIC. Compared to
VTM, we can even save almost 40% bit-rate at the same distortion level on CLIC.

We also show the R-D curves of all compared methods in Fig. 1. As illustrated, our method outperforms both end-to-end
learned compression methods and hybrid codecs.

2For NeurIPS 2018, we evaluate the released models based on the mean and scale hyper-prior but without the auto-regressive context model.



Table 4. BD-rate results (↓) on Kodak [8] and CLIC [1]. We set BPG [6] as the anchor. The best results are shown in bold and the second
best are underlined.

Kodak CLIC

NeurIPS 2018 [2] -47.0% -52.7%
ICLR 2019 [9] -49.8% -55.1%
VTM8 4:2:0 2020 [5] -10.2% -10.8%
VTM8 4:4:4 2020 [5] -19.0% -25.0%
TPAMI 2021 [7] -51.4% -46.8%

Ours -53.4% -59.4%
Ours+ -55.5% -62.2%
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Figure 1. R-D curves on Kodak and CLIC.

3. Ablation Studies
In this section, we provide more ablation studies to verify the designs of our framework. It should be noted that, for all

compared settings, online finetuning mechanism and post-processing is turned off.
1) Study on Kernel Size. The kernel size of the neural-syntax-controlled convolutional layer is an important hyper-parameter
in the proposed method, as it affects both the bit-rate usage and the modeling capacity. To study the effects of different kernel
sizes, we further compare the performance of alternative kernel sizes, i.e. 1 × 1 and 3 × 3 on Kodak. According to the
experimental results in Fig. 2, 3×3 conv and Ours (which uses 1×1 convolutional kernel) have a marginal difference in
R-D performance. Since 1 × 1 kernels are more light-weight in computation, we adopt the 1 × 1 settings in the proposed
framework.
2) Study on Channel Split. We further conduct an experiment on the ‘SPLIT’ operation in the network. One way is to
directly map the whole latent feature map to the neural-syntax stream without an explicit split. We compare this non-split
setting to the split one on Kodak. The results are shown in Fig. 2, corresponding to w/o SPLIT and Ours. As shown, the
performance degrades a little without explicit partitioning despite the fact that more information and parameters are used to
generate reconstruction images in w/o SPLIT setting.
3) Network Depth Where We Inject the Generated Weights. In our proposed framework, we generate weights of the last
layer in the decoder with the aid of neural-syntax, which improves the coding efficiency. We also try generating weights of
other layers. However, the computation burden is heavy for the middle layers. For a 5×5 transposed convolutional layer in
a low bit-rate model with the input channel 192 and output channel 192, it has 5×5×192×192=921,600 parameters to be
generated. Considering that we use sequential fully-connected layers to generate these parameters, it will utilize quite a lot
of GPU memory and computation resources. For the penultimate convolutional layer, the width of the output channel is 16,
which makes the weight injection more feasible. Therefore, we fix other four layers and only generate the weights of the



penultimate convolutional layer. The results are shown in Fig. 2. As illustrated, the generated penultimate layer degrades the
overall performance by a large margin.
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Figure 2. Illustration of ablation studies.

4) Effectiveness of Multi-Scale Pooling. In our Syntax Generator, we first extract multi-scale features then fuse them after
the global pooling. The global pooling helps us handle the input with arbitrary resolution. However, the simple global
pooling will inevitably lose too much spatial information. To handle this, we gradually down-scale the feature to remove
spatial information progressively to obtain better representation. We compare the simple global pooling with our multi-scale
pooling in Fig. 2. From the figure we can find that, with the aid of a multi-scale extraction mechanism, the performance can
be improved by 0.06 dB in PSNR at the same bit-rate.

4. Subjective Results
In this section, we will provide more visual results in Fig. 3-6. We compare our method to classic image standard

JPEG [14], advanced conventional codecs BPG [13] and VTM [5], and our baseline model [9].
In Fig. 3, we crop several patches from the reconstruction results to show that our method can preserve more details in a

high-resolution image. In Fig. 3 (a) and (b), strings are fractured or vanished in other methods. In our method, though they
are inevitably blurred due to compression, they still exist in most cases.

We also show reconstruction results in full resolution rather than cropped patches. In Fig. 4, compared to VTM, letters on
the hat are clearer and there are no blocking artifacts in the sky. In Fig. 5, our method preserves the edges better than VTM.

Beyond common natural images, we also compare our method to the state-of-the-art codec VTM on human face images.
In Fig. [10] (a), the face compressed by VTM is suffered from ringing artifacts, which doesn’t exist in our result. In Fig. [10]
(b), our result retains better subjective quality in both foreground and background. In background, our method keeps the
edge of the text sharp without ringing artifacts. In foreground, the teeth are over-smoothed in VTM results while the teeth
boundary in our reconstruction is clearer.

In all, beyond high objective results, our method can also provide better visual quality.
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Figure 3. Subjective results compared to JPEG [14], BPG [6], ICLR 2019 [9] and VTM [5] on vita-vilcina-3055.png from CLIC.

5. Limitations
In this paper, we propose a data-dependent transform based learned image compression framework. Neural-syntax is

introduced to generate the image-specific convolutional kernels at the decoder side. We further introduce a continuous mode
decision mechanism at the testing stage to find a better latent representation as well as decoder parameters. Experimental
results demonstrate the effectiveness of our method. However, there still exist some limitations.

First, a gap exists between training and testing. When testing, we use the continuous mode decision mechanism to finetune
the encoder. But in the training stage, we simply inference the encoder instead of overfitting it with the decoder fixed since
it is extremely time-consuming to simply implement such a training strategy. A high-efficiency training algorithm which is
able to narrow the gap between training and testing is still to be designed.

Second, continuous mode decision needs considerable GPU memory, especially for high-resolution images. It leaves
room for a more delicate design to effectively implement the continuous mode decision without huge memory overhead.
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Figure 4. Subjective results on kodim03 from Kodak [8].
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Figure 5. Subjective results on kodim01 from Kodak [8]
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Figure 6. Subjective results on #165111 and #202591 from CelebA [10].
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